Analysis III : Übungsblatt 2

Dr. Sebastian Heller

20. Oktober 2011

Diese Aufgaben sind schriftlich auszuarbeiten und am 3. November vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Sei μ ein Borel-Maß auf \mathbb{R}^n das nur Werte in $\{0,1\}$ annimmt. Dann gibt es $x_0 \in \mathbb{R}^n$, so daß μ gleich dem Dirac-Maß δ_{x_0} ist.

Aufgabe 2. Die Menge $\mathbb Q$ der rationalen Zahlen sowie das Cantor–Diskontinuum sind Nullmengen bezüglich des Lebesgue–Maßes λ auf $\mathbb R$.

Aufgabe 3. Zeigen Sie:

- a) \mathbb{R}^{n-1} ist eine Nullmenge bezüglich des Lebesgue-Maßes auf \mathbb{R}^n (wobei $\mathbb{R}^{n-1} = \{x \in \mathbb{R}^n \mid x_n = 0\}$).
- b) Sei $Q \subset \mathbb{R}^n$ eine Teilmenge, so daß $Q' \subset Q \subset Q'$ für einen kompakten Quader Q'. Dann ist Q Lebesgue-messbar und $\lambda(Q) = \lambda(Q')$.

Aufgabe 4. Sei μ^* ein äußeres Maß auf X. Zeigen Sie:

- a) Ist $N \subset X$ eine Nullmenge bezüglich μ^* , d.h. gilt $\mu^*(N) = 0$, so ist N messbar.
- b) Der Maßraum $(X, \mathcal{M}(\mu^*), \mu^*_{|\mathcal{M}(\mu^*)})$ ist vollständig.

Aufgabe 5* Sei (X, \mathcal{A}, μ) ein Maßraum welcher σ -endlich ist, d.h. sich zerlegen läßt in abzählbar viel Mengen endlichen Maßes. Zeigen Sie:

- i) $\mu^*(E) := \inf \{ \mu(A) \mid A \in \mathcal{A}, E \subset A \}$ definiert ein äußeres Maß auf X.
- ii) Für $A \in \mathcal{A}$ gilt $\mu^*(A) = \mu(A)$ und $A \in \mathcal{M}(\mu^*)$.
- iii) Jedes $E \in \mathcal{M}(\mu^*)$ mit $\mu^*(E) < \infty$ ist von der Form $A \cup N$ mit $A \in \mathcal{A}$ und $N \subset N'$ für eine Nullmenge $N' \in \mathcal{A}$. (Tip: die Zerlegung kann man konstruieren, indem man $B, C \in \mathcal{A}$ wählt, so daß $E \subset B$ und $\mu^*(E) = \mu(B)$ sowie $B \setminus E \subset C$ und $\mu^*(B \setminus E) = \mu(C)$ gelten. Warum geht das?)
- iv) Zeigen Sie, daß sich jedes $E \in \mathcal{M}(\mu^*)$ zerlegen läßt wie in iii). (Tip: benutzen Sie hier die σ -Endlichkeit.)

Einen σ -endlichen Maßraum kann man also "vervollständigen", indem man μ zu einem äußeren Maß μ^* erweitert und dann wieder das (nach Caratheodory) zu μ^* gehörige Maß betrachtet. Folgern Sie:

v) Das Lebesgue–Maß auf der σ –Algebra der Lebesgue–messbaren Teilmengen des \mathbb{R}^n ist die Vervollständigung des Lebesgue–Maßes auf den Borel–Mengen.

(Hier gibt es 2 Bonuspunkte pro Teilaufgabe.)