Geometrie: Übungsblatt 5

11. November 2014

Diese Aufgaben sind schriftlich auszuarbeiten und bis vor der Vorlesung am 20. November abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Seien U_1 , $U_2 \subset V$ Untervektorräume eines endlichdimensionalen Vektorraumes. Beweisen Sie die projektive Dimensionsformel

$$\dim(\mathbb{P}(U_1+U_2)) = \dim(\mathbb{P}(U_1)) + \dim(\mathbb{P}(U_2)) - \dim(\mathbb{P}(U_1\cap U_2)).$$

Leiten Sie endsprechende affine Dimensionsformeln her. (Diskutieren Sie bei der affinen Version separat den Fall sich schneidender affiner Unterräume und den Fall disjunkter Unterräume.)

Aufgabe 2. Wieviele Punkte und Geraden hat die projektive Ebene $\mathbb{F}_2\mathbb{P}^2$ über dem zweielementigen Körper \mathbb{F}_2 . Wieviele Punkte und Geraden hat ihr affiner Teil? Fertigen Sie eine Skizze an.

Aufgabe 3. Eine bijektive Abbildung $f: \mathbb{KP}^1 \to \mathbb{KP}^1$, die Doppelverhältnisse invariant läßt, ist eine projektive Transformation.

Aufgabe 4. Seien P_1 , ..., P_4 vier paarweise verschiedene Punkte eines eindimensionalen projektiven Raumes.

- a) Welche Werte kann das Doppelverhältnis $DV(P_1, P_2, P_3, P_4)$ annehmen?
- b) Es gilt genau dann $DV(P_1, P_2, P_3, P_4) = -1$, wenn

$$DV(P_1, P_2, P_3, P_4) = DV(P_3, P_2, P_1, P_4).$$

c) Vier paarweise verschiedene Punkte $A, B, C, D \in \mathbb{R}$ erfüllen genau dann DV(A,C,B,D)=-1, wenn genau einer der Punkte C und D zwischen A und B liegt und

$$\frac{|A-C|}{|C-B|} = \frac{|A-D|}{|D-B|}.$$

(Man spricht dann von $harmonischer\ Teilung$ der Punkte A und B durch die Punkte C und D.)