Analysis II: Übungsblatt 7

Jonas Ziefle 1. Juni 2017

Diese Aufgaben sind schriftlich auszuarbeiten und am 20. Juni vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Betrachte Abbildungen $f: \mathbb{R}^2 \to \mathbb{R}^3$ und $q: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$f(s,t) = (x(s,t), y(s,t), z(s,t)) = (st, s\cos(t), \sin(t))$$

und

$$g(x, y, z) = w(x, y, z) = xy + yz + zx.$$

"Überprüfen" Sie die Kettenregel durch Berechnen von $Dg_{|q}$, $Df_{|p}$, $Dg_{|q}Df_{|p}$ und $D(g \circ f)_{\mid p}$, wobei p = (0,1) und q = f(p).

Aufgabe 2. Prüfen Sie die folgenden Abbildungen auf Differenzierbarkeit im Punkt p und berechnen Sie gegebenenfalls die Ableitung.

- a) $g: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x^2 y, z \log(1 + x^2), e^{xz})$ mit $p = (x_0, y_0, z_0)$. b) $h: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x, y, \sin(x + y) + \cos(y) + x)$ mit $p = (\pi/2, 0)$.

Berechnen Sie für b) die Richtungsableitung in p in Richtung v = (1, 1).

a) Sei $f: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$ eine bijektive differenzierbare Aufgabe 3. Abbildung, deren Inverse $g := f^{-1}$ auch differenzierbar ist. Berechnen Sie $Dg_{|q}$ im Punkt q = f(p).

b) Betrachten Sie die Abbildung

$$\Phi \colon \mathbb{R}_+ \times] - \pi, \pi[\to \mathbb{R}^2 \setminus \{0\}, \qquad (r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi).$$

Skizzieren Sie die Bilder der Koordinatenlinien unter Φ . Skizzieren Sie am Beispiel von zwei Punkten p_1 und p_2 die Spaltenvektoren der Jacobimatrix von Φ in p_i als Vektoren mit Fußpunkt $\Phi(p_i)$.

- c) Zeigen Sie, daß die Umkehrabbildung von Φ differenzierbar ist und berechnen Sie deren Jacobimatrix. (Wo ist Φ^{-1} genau definiert?)
- d) Kann man Φ fortsetzen zu einem Homöomorphismus mit Bild $\mathbb{R}^2 \setminus \{0\}$?

Aufgabe 4. (Nur für BaSc) Seien A, $B \in M(n \times n, \mathbb{R})$ und b, c, $d \in \mathbb{R}^n$. Bestimmen Sie die Ableitungen der folgenden Abbildungen:

- a) $f: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto A(x+b) + \langle c, x \rangle d$
- b) $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto \langle x, Bx \rangle^2 + \langle b Ax, b \rangle$ c) $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{\langle x, Ax \rangle}{\langle x, x \rangle}$