Analysis III: Übungsblatt 7

Jonas Ziefle 30. November 2017

Diese Aufgaben sind schriftlich auszuarbeiten und am 12. Dezember vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Sei $f(r,\theta) = (r\cos(\theta), r\sin(\theta))$. Berechnen Sie $f^*(\omega_1)$ und $f^*(\omega_2)$ für $\omega_1 = \frac{x}{x^2+y^2}dy - \frac{y}{x^2+y^2}dx$ und $\omega_2 = x dx + y dy$.

Aufgabe 2. Transformieren Sie die Form $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^2)$ auf Polarkoordinaten. Transformieren Sie die Form $\omega = dx \wedge dy \wedge dz \in \Omega^3(\mathbb{R}^3)$ auf sphärische Koordinaten und auf Zylinderkoordinaten.

Aufgabe 3. Berechnen Sie das äußere Differental der folgenden Formen:

- a) $xy dx \wedge dy + 2x dy \wedge dz + 2y dx \wedge dz$
- b) $z^2 dx \wedge dy + (z^2 + 2y) dx \wedge dz$
- c) $13x dx + y^2 dy + xyz dz$
- d) $e^x \cos(y) dx e^x \sin(y) dy$
- e) $x dy \wedge dz + y dx \wedge dz + z dx \wedge dy$

Aufgabe 4. Zeigen Sie, daß sich jede 2–Form $\omega \in \bigwedge^2(V^*)$ auf einem n–dimensionalen Vektorraum V in die Gestalt

$$\omega = \alpha_1 \wedge \alpha_2 + \dots + \alpha_{2r-1} \wedge \alpha_{2r}$$

bringen läßt, wobei α_1 , ..., α_n eine Basis von V^* ist. Die Zahl r ist unabhängig von der Basis und durch die Bedingungen

$$\underbrace{\omega \wedge ... \wedge \omega}_{r-\text{mal}} \neq 0$$
 und $\underbrace{\omega \wedge ... \wedge \omega}_{r+1-\text{mal}} = 0$

charakterisiert.