Analysis III : Übungsblatt 11

Jonas Ziefle 11. Januar 2018

Diese Aufgaben sind schriftlich auszuarbeiten und am 23. Januar vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Zeigen Sie, daß die Umkehrabbildungen der stereographischen Projektionen φ_S und φ_N von S^n Parametrisierungen wie im Satz über Untermannigfaltigkeiten sind. Berchnen Sie den Kartenwechsel $\varphi_N \circ \varphi_S^{-1}$.

Aufgabe 2. Sei M eine Menge mit einer differenzierbaren Struktur. Zeigen Sie: die induzierte Topologie auf M besitzt genau dann eine abzählbare Basis, wenn die differenzierbare Struktur durch einen abzählbaren Atlas repräsentiert werden kann.

Aufgabe 3.

- a) Überlegen Sie, wie man das Produkt $M \times N$ zweier Mannigfaltigkeiten M, N wieder zu einer Mannigfaltigkeit machen kann.
- b) Zeigen Sie: man kann $M = \mathbb{R}^2/\mathbb{Z}^2$ zu einer Mannigfaltigkeit machen, so daß die Projektion $p \colon \mathbb{R}^2 \to M$ differenzierbar ist und eine Abbildung $f \colon M \to N$ in eine Mannigfaltigkeit N genau dann differenzierbar ist, wenn $f \circ p$ differenzierbar ist.
- c) Zeigen Sie, daß $M=\mathbb{R}^2/\mathbb{Z}^2$ diffeomorph zu $S^1\times S^1$ ist.
- d) Zeigen Sie, daß $M=\mathbb{R}^2/\mathbb{Z}^2$ diffeomorph zu einem Rotationstorus in \mathbb{R}^3 ist.

Aufgabe 4. Sei Q eine nicht-ausgeartete quadratische Form auf \mathbb{R}^n . Zeigen Sie, daß die Gruppe

$$O(Q) = \{A \in Gl(n, \mathbb{R}) \mid Q \circ A = Q\}$$

eine differenzierbare Mannigfaltigkeit ist. Welche Dimension hat sie?