Einführung in die Funktionentheorie: Übungsblatt 5

Jonas Ziefle 22. Juni 2018

Diese Aufgaben sind schriftlich auszuarbeiten und am 29. Juni vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Für $n, m \in \mathbb{Z}$ and $0 < r \neq 1$ bestimme man die Umlaufzahl von

$$\gamma \colon [0, 2\pi] \to \mathbb{C} \setminus \{0\}, \quad t \mapsto e^{int} + re^{imt}$$

um den Nullpunkt.

Aufgabe 2. Die Funktion f habe einen Pol 2. Ordnung im Punkt z_0 . Man berechne das Residuum von f^2 in z_0 aus den Laurentkoeffizienten von f.

Aufgabe 3. Welche Werte kann das Integral $\int_{\gamma} \frac{1}{1+z^2} dz$ für geschlossene Kurven in $\mathbb{C}\setminus\{\pm i\}$ annehmen? Wie lautet die Antwort für $\int_{\gamma} \frac{1}{(z+i)^2} dz$?

Aufgabe 4. Sei f holomorph in einer Umgebung von z = 0 mit Nullstelle bei z = 0. Unter welcher Bedingung gibt es eine Funktion g, so daß $f(z) = (g(z))^k$ in einer Umgebung von z = 0? (Diese Frage haben wir in der Vorlesung schon geklärt!) Zeigen Sie: die Funktion g kann man dann schreiben als

$$g(z) = \exp(\frac{1}{k}\log(f(z))),$$

wobei $\log(f(z))$ eine Stammfunktion von $\frac{f'(z)}{f(z)}$ auf der geschlitzten Ebene ist. Anleitung: auf $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$ ist $\log(f(z))$ nur bis auf ein Vielfaches von $2\pi i$ definiert. Welches Vielfache? (Tip: berechnen Sie das Residuum von $\frac{f'(z)}{f(z)}$ in z=0.) Die obige Bedingung besagt nun genau, daß $\exp(\frac{1}{k}\log(f(z)))$ auf ganz \mathbb{C}_* definiert ist. Warum kann man dieses g holomorph nach z=0 fortsetzen?

Aufgabe 5.*

- a) Zeigen Sie, daß *Homotopie von geschlossenen Kurven* (oder *Homotopie mit festen Randpunkten*) eine Äquivalenzrelation ist.
- b) Zeigen Sie, daß zwei geschlossene Kurven in $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$ genau dann homotop zueinander sind, wenn sie dieselbe Umlaufzahl um den Nullpunkt haben.