Geometrie von Mannigfaltigkeiten: Übungsblatt 5

Jonas Ziefle 13. November 2018

Diese Aufgaben sind schriftlich auszuarbeiten und am 22. November vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Wie sieht die Basiswechselmatrix von der Gaussbasis bezüglich sphärischer (zylindrischer) Koordinaten im 3-dimensionalen Raum \mathbb{R}^3 auf die Standardbasis aus?

Aufgabe 2. Sei $f: M \to N$ eine glatte Abbildung zwischen Mannigfaltigkeiten. Seien X, Y Vektorfelder auf M und \tilde{X}, \tilde{Y} Vektorfelder auf N, so daß $df_p(X_p) = \tilde{X}_{f(p)}$ und $df_p(Y_p) = \tilde{Y}_{f(p)}$ für alle $p \in M$. Dann gilt

$$df_p([X,Y]_p) = [\tilde{X}, \tilde{Y}]_{f(p)}$$
 für alle $p \in M$.

Aufgabe 3. Berechnen Sie den Kommutator [V, W] der Vektorfelder

$$V = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$

und

$$W = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

auf $\mathbb{R}^2 \setminus \{0\}$. Schreiben Sie V und W in Polarkoordinaten $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi)$.

Aufgabe 4. Zeigen Sie, daß das Vektorfeld, welches in sphärischen Koordinaten durch $X = \frac{\partial}{\partial \varphi}$ gegeben ist, sich glatt in die Pole fortsetzt.

Aufgabe 5.* Für welche Polynome P(z) setzt sich $V = P(z)\frac{\partial}{\partial z}$ zu einem Vektorfeld auf \mathbb{CP}^1 fort?