Prof. Dr. Christoph Bohle

Geometry of Manifolds/Geometry in Physics Exercise Sheet 1

Jonas Ziefle

15. Oktober 2019

Diese Aufgaben sind schriftlich auszuarbeiten und am 24. Oktober vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Zweierabgaben sind erlaubt. Bitte bei der ersten Abgabe Matrikelnummer(n) angeben.

Aufgabe 1. Show that a metric space admits a countable basis of the topology if and only if it admits a countable dense subset. Conclude that \mathbb{R}^n admits a countable basis.

Aufgabe 2. Show that $\mathbb{R}^n/\mathbb{Z}^n$ equipped with the quotient topology (cf. Exercise 6) is a topological manifold. Show that \mathbb{R}/\mathbb{Z} is homeomorphic to the unit circle \mathbb{S}^1 .

Aufgabe 3. Show that $\mathbb{R}^2/\mathbb{Z}^2$ with the quotient topology (as in Exercise 2) is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^1$ with the product topology (cf. Exercise 7).

Aufgabe 4. Show that the *projective spaces*

 $\mathbb{KP}^n = (\mathbb{K}^{n+1} \setminus \{0\})_{/\sim}, \qquad v \sim w \Leftrightarrow v = w\lambda \text{ for } \lambda \in \mathbb{K}$

over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ with the quotient topology (cf. Exercise 6) are topological manifolds.

Additional exercises (for the first exercise session)

Aufgabe 5. Show that a bijective continuous map

$$f: X \to Y$$

from a compact space X to a Hausdorff space Y is a homeomorphism.

Aufgabe 6. Given a topological space X and a surjective map

$$p\colon X\to X,$$

the quotient topology on \tilde{X} is defined by

$$O \subset X$$
 is open $\iff p^{-1}(O) \subset X$ is open.

Show that:

- i) The quotient topology is the maximal topology on \tilde{X} such that p is continuous.
- ii) The quotient topology is the only topology on \tilde{X} such that

-p is continuous and

- for any map $f: X \to Z$ with values in a topological space Z:

f is continuous $\iff f \circ p$ is continuous.

iii) It is possible that X is Hausdorff, but the quotient topology on \tilde{X} is not.

Aufgabe 7. Given topological spaces X_1 and X_2 , the product topology on

 $X_1 \times X_2$

is the topology with basis $\{O_1 \times O_2 \mid O_i \subset X_i \text{ open}\}$. Show that:

- i) The product topology is the smallest topology such that both projections $\pi_i: X_1 \times X_2 \to X_i, i = 1, 2$ are continuous.
- ii) The product topology is the only topology on $X_1 \times X_2$ such that
 - the projections $\pi_i \colon X_1 \times X_2 \to X_i, i = 1, 2$ are continuous and
 - for any map $f: \mathbb{Z} \to X_1 \times X_2$ from a topological space \mathbb{Z} to $X_1 \times X_2$

f is continuous $\iff \pi_i \circ f, i = 1, 2$ are continuous.

iii) If X_1, X_2 are Hausdorff, then $X_1 \times X_2$ is Hausdorff.