Optimal transport and non-branching geodesics

Martin Kell

Pisa, November 15th 2018
\(L^p \)-Monge problem

- Solve for good \(\mu \) and arbitrary \(\nu \) the following

\[
\inf_{\nu = T_* \mu} \int d^p(x, T(x)) d\mu(x)
\]

- When is the solution unique?
\(L^p\)-Monge-Kantorovich problem

- Show that the minimum of
 \[\inf_{\pi \in \Pi(\mu, \nu)} \int d^p(x, y) \, d\pi(x, y)\]
 is supported on a graph of measurable map.

- For \(p = 1\) almost never true.
- For \(p \in (1, \infty)\) depends on the geometry and on \(\mu\).
- If true then
 - the optimal coupling is unique
 - Monge = Kantorovich.
Show that the minimum of

$$\inf_{\pi \in \Pi(\mu, \nu)} \int d^p(x, y) d\pi(x, y)$$

is supported on a graph of measurable map.

For $p = 1$ almost never true.

For $p \in (1, \infty)$ depends on the geometry and on μ.

If true then

- the optimal coupling is unique
- Monge = Kantorovich.
Show that the minimum of

$$\inf_{\pi \in \Pi(\mu, \nu)} \int d^p(x, y) d\pi(x, y)$$

is supported on a graph of measurable map.

For $p = 1$ almost never true.

For $p \in (1, \infty)$ depends on the geometry and on μ.

If true then
- the optimal coupling is unique
- Monge = Kantorovich.
Show that the minimum of
\[\inf_{\pi \in \Pi(\mu, \nu)} \int d^p(x, y) d\pi(x, y) \]
is supported on a graph of measurable map.

For \(p = 1 \) almost never true.

For \(p \in (1, \infty) \) depends on the geometry and on \(\mu \).

If true then
- the optimal coupling is unique
- Monge = Kantorovich.
Dependence on μ and the geometry of geodesics

BLACKBOARD
Non-branching geodesics

- Assumption: \((M, d, m)\) a complete geodesic measure space

Definition (non-branching)

A geodesic space \((M, d)\) is non-branching if for all geodesics \(\gamma, \eta : [0, 1] \rightarrow M\) with \(\gamma_0 = \eta_0\) and \(\gamma_t = \eta_t\) for some \(t \in (0, 1)\) it holds \(\gamma_t = \eta_t\) for all \(t \in [0, 1]\).

Equivalently:
If \(m\) is a midpoint of \((x, y)\) and \((x, z)\) then \(y = z\).
Non-branching geodesics

- Assumption: \((M, d, m)\) a complete geodesic measure space

Definition (non-branching)

A geodesic space \((M, d)\) is non-branching if for all geodesics \(\gamma, \eta : [0, 1] \to M\) with \(\gamma_0 = \eta_0\) and \(\gamma_t = \eta_t\) for some \(t \in (0, 1)\) it holds \(\gamma_t = \eta_t\) for all \(t \in [0, 1]\).

Equivalently:

If \(m\) is a midpoint of \((x, y)\) and \((x, z)\) then \(y = z\).
Non-branching geodesics

- Assumption: \((M, d, m)\) a complete geodesic measure space

Definition (non-branching)

A geodesic space \((M, d)\) is non-branching if for all geodesics \(\gamma, \eta : [0, 1] \rightarrow M\) with \(\gamma_0 = \eta_0\) and \(\gamma_t = \eta_t\) for some \(t \in (0, 1)\) it holds \(\gamma_t = \eta_t\) for all \(t \in [0, 1]\).

Equivalently:

If \(m\) is a midpoint of \((x, y)\) and \((x, z)\) then \(y = z\).
Lemma (no intermediate overlap)

A geodesic space is non-branching if the following holds: Whenever for two geodesics γ and η satisfy

$$d^p(\gamma_0, \gamma_1) + d^p(\eta_0, \eta_1) \leq d^p(\gamma_0, \eta_1) + d^p(\eta_0, \gamma_1)$$

and $\gamma_t = \eta_t$ for some $t \in (0, 1)$ then $\gamma \equiv \eta$.
Examples of non-branching space

- Riemannian/Finsler manifolds (geodesic = “ODE solution”)
- Alexandrov spaces (comparison condition)
- Busemann G-spaces (unique continuation property)
- $\text{CAT}(\kappa) \oplus \text{RCD}(K,N)$-space [Kapovich-Ketterer '17]
 \implies works also for $\text{MCP}_{loc}(K,N)$-spaces that are (locally) Busemann convex
- subRiemannian Heisenberg(-type) groups [Ambrosio-Rigot '04]
- subRiemannian Engel group [Ardentov-Sachkov '11,'15]
- Open: Ricci limits, RCD-spaces, Carnot groups
Some history of L^p-Monge-Kantorovich, $p > 1$

- Theorems using Rademacher Theorem
 - in \mathbb{R}^n [Brenier '91, Gangbo-McCann '96]
 - Riemannian manifolds [McCann '01, Gigli '11]
 - Finsler manifolds [Villani '09, Ohta '09]
 - Heisenberg groups [Ambrosio-Rigot '04]
 - nice subRiemannian manifolds [Figalli-Riffort '10]
 - Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]

- Anyone missing?
Some history of L^p-Monge-Kantorovich, $p > 1$

- Theorems using Rademacher Theorem
 - in \mathbb{R}^n [Brenier ’91, Gangbo-McCann ’96]
 - Riemannian manifolds [McCann ’01, Gigli ’11]
 - Finsler manifolds [Villani ’09, Ohta ’09]
 - Heisenberg groups [Ambrosio-Rigot ’04]
 - nice subRiemannian manifolds [Figalli-Riffort ’10]
 - Alexandrov spaces [Bertrand ’08/’15, Schultz-Rajala ’18]

- Anyone missing?
Some history of L^p-Monge-Kantorovich, $p > 1$

- Theorems using Rademacher Theorem
 - in \mathbb{R}^n [Brenier '91, Gangbo-McCann '96]
 - Riemannian manifolds [McCann '01, Gigli '11]
 - Finsler manifolds [Villani '09, Ohta '09]
 - Heisenberg groups [Ambrosio-Rigot '04]
 - nice subRiemannian manifolds [Figalli-Riffort '10]
 - Alexandrov spaces [Bertrand '08/'15, Schultz-Rajala '18]

- Anyone missing?
Some history of L^p-Monge-Kantorovich, $p > 1$

- Theorems using optimal transport and non-branching
 - non-branching CD(K,N)-spaces [Gigli '12]
 - strongly non-branching doubling spaces with interpolation property [Ambrosio-Rajala '14]
 - non-branching spaces with very weak MCP [Cavalletti-Huesmann '15]

- using weaker essentially non-branching (e.n.b.) condition
 - strong CD(K,∞)-spaces [Rajala-Sturm '14]
 - RCD(K,N)-spaces [Gigli-Rajala-Sturm '16]
 - e.n.b. MCP(K,N)-spaces [Cavalletti-Mondino '17]
 - e.n.b. spaces with very weak MCP [K. '17]
Some history of L^p-Monge-Kantorovich, $p > 1$

- Theorems using optimal transport and non-branching
 - non-branching $\text{CD}(K,N)$-spaces [Gigli '12]
 - strongly non-branching doubling spaces with interpolation property [Ambrosio-Rajala '14]
 - non-branching spaces with very weak MCP [Cavalletti-Huesmann '15]

- using weaker essentially non-branching (e.n.b.) condition
 - strong $\text{CD}(K,\infty)$-spaces [Rajala-Sturm '14]
 - $\text{RCD}(K,N)$-spaces [Gigli-Rajala-Sturm '16]
 - e.n.b. MCP(K,N)-spaces [Cavalletti-Mondino '17]
 - e.n.b. spaces with very weak MCP [K. '17]
Notation

• $\Gamma \subset M \times M$

$$\Gamma_t := \{\gamma_t | \gamma \in \text{Geo}_{[0,1]}(M, d), (\gamma_0, \gamma_1) \in \Gamma\}$$

• $A \subset M$ and $x \in M$

$$A_{t,x} = (A \times \{x\})_t$$

Remark

In the following fix a $p \in (1, \infty)$ so that optimal = d^p-optimal, cyclically monotone = d^p-cyclically monotone.
Very weak MCP condition

Definition ([Cavalletti-Huesmann ’15])

A metric measure space is qualitatively non-degenerate if for all $R > 0$ there is a function $f_R : (0, 1) \rightarrow (0, \infty)$ with $C_R = \limsup_{t \rightarrow 0} f_R(t) > \frac{1}{2}$ such that whenever $\{x\}, A \subset B_R(x_0)$ then

$$m(A_t, x) \geq f_R(t)m(A).$$

Remark

Note that $2C_R > 1$.

Optimal transport and non-branching geodesics

Martin Kell

10/33
Optimal transport maps

Definition (Good Transport Behavior)

A metric measure space \((M,d,\mathfrak{m})\) has **good transport behavior** \((GTB)_p\) if for all \(\mu \in \mathcal{P}^{ac}_p(M)\) and all \(\nu \in \mathcal{P}_p(M)\) every optimal coupling \(\pi\) is induced by a transport map \(T\), i.e. \(\pi = (\text{id} \times T)_\ast \mu\).

Theorem ([Cavalletti-Huesmann ’15])

Assume \((M,d,\mathfrak{m})\) is qualitatively non-degenerate and non-branching. Then \((M,d,\mathfrak{m})\) has good transport behavior \((GTB)_p\) for all \(p \in (1,\infty)\).
Definition (Good Transport Behavior)

A metric measure space \((M, d, m)\) has good transport behavior \((GTB)_p\) if for all \(\mu \in \mathcal{P}^{ac}_p(M)\) and all \(\nu \in \mathcal{P}_p(M)\) every optimal coupling \(\pi\) is induced by a transport map \(T\), i.e. \(\pi = (\text{id} \times T)_* \mu\).

Theorem ([Cavalletti-Huesmann '15])

Assume \((M, d, m)\) is qualitatively non-degenerate and non-branching. Then \((M, d, m)\) has good transport behavior \((GTB)_p\) for all \(p \in (1, \infty)\).
Definition (Good Transport Behavior)

A metric measure space \((M,d,m)\) has **good transport behavior** \((GTB)_p\) if for all \(\mu \in P^{ac}_p(M)\) and all \(\nu \in P_p(M)\) every optimal coupling \(\pi\) is induced by a transport map \(T\), i.e. \(\pi = (id \times T)_* \mu\).

Theorem ([Cavalletti-Huesmann ’15])

Assume \((M,d,m)\) is qualitatively non-degenerate and non-branching. Then \((M,d,m)\) has good transport behavior \((GTB)_p\) for all \(p \in (1,\infty)\).
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}, \ x_1 \neq x_2$

- Choose some optimal coupling π and note
 $$\text{supp}\, \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$
 $$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$
 - by qualitative non-degeneracy (and A is compact)
 $$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$
 $$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$
 $$= 2 \limsup_{t \to 0} f(t)m(A) = 2C_R m(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}, \ x_1 \neq x_2$

- Choose some optimal coupling π and note

$$\text{supp } \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$

$$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$

 - by qualitative non-degeneracy (and A is compact)

$$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$

$$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$

$$= 2 \limsup_{t \to 0} f(t)m(A) = 2C_R m(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}$, $x_1 \neq x_2$

- Choose some optimal coupling π and note

$$\text{supp} \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$
 $$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$
 - by qualitative non-degeneracy (and A is compact)
 $$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$
 $$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$
 $$= 2 \limsup_{t \to 0} f(t)m(A) = 2C_Rm(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}, \; x_1 \neq x_2$

- Choose some optimal coupling π and note

$$\text{supp} \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$

$$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$

- by qualitative non-degeneracy (and A is compact)

$$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$

$$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$

$$= 2 \limsup_{t \to 0} f(t)m(A) = 2C_Rm(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}, \; x_1 \neq x_2$

- Choose some optimal coupling π and note
 \[
 \text{supp}\pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.
 \]

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$
 \[
 A_{t,x_1} \cap A_{t,x_2} = \emptyset.
 \]
 - by qualitative non-degeneracy (and A is compact)
 \[
 m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})
 = \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})
 = 2 \limsup_{t \to 0} f(t) m(A) = 2C_R m(A).
 \]

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}, \ x_1 \neq x_2$

- Choose some optimal coupling π and note

$$\text{supp } \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$

$$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$

- by qualitative non-degeneracy (and A is compact)

$$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$

$$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$

$$= 2 \limsup_{t \to 0} f(t)m(A) = 2C_R m(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for $\nu = (1 - \lambda)\delta_{x_1} + \lambda\delta_{x_2}$, $x_1 \neq x_2$

- Choose some optimal coupling π and note

$$\text{supp } \pi = A_1 \times \{x_1\} \cup A_2 \times \{x_2\} \cup A \times \{x_1, x_2\}.$$

- Observation:
 - π is induced by a transport map iff $m(A) = 0$.
 - by non-branching for $t \in (0, 1)$
 $$A_{t,x_1} \cap A_{t,x_2} = \emptyset.$$
 - by qualitative non-degeneracy (and A is compact)
 $$m(A) \geq \limsup_{t \to 0} m(A_{t,x_1} \cup A_{t,x_2})$$
 $$= \limsup_{t \to 0} m(A_{t,x_1}) + m(A_{t,x_2})$$
 $$= 2\limsup_{t \to 0} f(t)m(A) = 2C_R m(A).$$

- Conclusion: $m(A) = 0$ and π is induced by a transport map.
Proof for \(\nu = \sum_{i=1}^{n} \lambda_i \delta_{x_i} \)

- Choose some optimal coupling \(\pi \) then

\[
\text{supp} \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \cup \bigcup_{i<j} A_{ij} \times \{x_i, x_j\}.
\]

- By previous slide \(m(A_{ij}) = 0 \).
- Hence

\[
T(x) = \begin{cases}
 x_i & x \in A_i \\
 x & \text{otherwise}
\end{cases}
\]

is a transport map.
Proof for $\nu = \sum_{i=1}^{n} \lambda_i \delta_{x_i}$

- Choose some optimal coupling π then

$$\text{supp}\pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \cup \bigcup_{i<j}^{n} A_{ij} \times \{x_i, x_j\}.$$

- By previous slide $m(A_{ij}) = 0$.
- Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ x & \text{otherwise} \end{cases}$$

is a transport map.
Proof for $\nu = \sum_{i=1}^{n} \lambda_i \delta_{x_i}$

- Choose some optimal coupling π then

 $$\text{supp } \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \cup \bigcup_{i<j}^{n} A_{ij} \times \{x_i, x_j\}.$$

- By previous slide $m(A_{ij}) = 0$.

- Hence

$$T(x) = \begin{cases} x_i & x \in A_i \\ \hat{x} & \text{otherwise} \end{cases}$$

is a transport map.
Proof for \(\nu = \sum_{i=1}^{n} \lambda_i \delta_{x_i} \)

- Choose some optimal coupling \(\pi \) then

\[
\text{supp } \pi = \bigcup_{i=1}^{n} A_i \times \{x_i\} \cup \bigcup_{i<j} A_{ij} \times \{x_i, x_j\}.
\]

- By previous slide \(m(A_{ij}) = 0 \).

- Hence

\[
T(x) = \begin{cases}
 x_i & \text{if } x \in A_i \\
 x & \text{otherwise}
\end{cases}
\]

is a transport map.
Observation

- For distinct \(x, y \in M\) and compact \(A \subset M\)

\[
A_- = \{z \in M \mid d(x, z) = d(y, z)\}
\]

\[
A_\neq = A \setminus A_-.
\]

- If \(A \times \{x, y\}\) is cyclically monotone then even without non-branching

\[
(A_\neq)_{t,x} \cap (A_\neq)_{t,y} = \emptyset.
\]

- Hence if

\[
\forall x \neq y : m(\{z \in M \mid d(x, z) = d(y, z)\}) = 0
\]

then any optimal coupling between \(\mu \ll m\) and \(\nu\) discrete is induced by a transport map.

- This holds for any normed space and measure assigning zero mass to hyperplanes.
Observation

- For distinct \(x, y \in M \) and compact \(A \subset M \)

\[
A_\equiv = \{ z \in M \mid d(x, z) = d(y, z) \}
\]

\[
A_\neq = A \setminus A_\equiv.
\]

- If \(A \times \{ x, y \} \) is cyclically monotone then even without non-branching

\[
(A_\neq)_{t,x} \cap (A_\neq)_{t,y} = \emptyset.
\]

- Hence if

\[
\forall x \neq y : m(\{ z \in M \mid d(x, z) = d(y, z) \}) = 0
\]

then any optimal coupling between \(\mu \ll m \) and \(\nu \) discrete is induced by a transport map.

- This holds for any normed space and measure assigning zero mass to hyperplanes.
Observation

• For distinct \(x, y \in M \) and compact \(A \subset M \)

\[
A_\equiv = \{ z \in M \mid d(x, z) = d(y, z) \}
\]
\[
A_\neq = A \setminus A_\equiv.
\]

• If \(A \times \{x, y\} \) is cyclically monotone then even without non-branching

\[
(A_\neq)_{t,x} \cap (A_\neq)_{t,y} = \emptyset.
\]

• Hence if

\[
\forall x \neq y : m(\{ z \in M \mid d(x, z) = d(y, z) \}) = 0
\]

then any optimal coupling between \(\mu \ll m \) and \(\nu \) discrete is induced by a transport map.

• This holds for any normed space and measure assigning zero mass to hyperplanes.
Observation

- For distinct \(x, y \in M \) and compact \(A \subset M \)

\[
A_-= \{ z \in M \mid d(x, z) = d(y, z) \}
\]

\[
A\neq = A \setminus A_-. \]

- If \(A \times \{ x, y \} \) is cyclically monotone then even without non-branching

\[
(A\neq)_{t,x} \cap (A\neq)_{t,y} = \emptyset. \]

- Hence if

\[
\forall x \neq y : m(\{ z \in M \mid d(x, z) = d(y, z) \}) = 0 \]

then any optimal coupling between \(\mu \ll m \) and \(\nu \) discrete is induced by a transport map.

- This holds for any normed space and measure assigning zero mass to hyperplanes.
Observation

- For distinct \(x, y \in M \) and compact \(A \subset M \)

\[
A_\equiv = \{ z \in M \mid d(x, z) = d(y, z) \}
\]
\[
A_{\not\equiv} = A \setminus A_\equiv.
\]

- If \(A \times \{x, y\} \) is cyclically monotone then even without non-branching

\[
(A_{\not\equiv})_{t,x} \cap (A_{\not\equiv})_{t,y} = \emptyset.
\]

- Hence if

\[
\forall x \neq y : m(\{z \in M \mid d(x, z) = d(y, z)\}) = 0
\]

then any optimal coupling between \(\mu \ll m \) and \(\nu \) discrete is induced by a transport map.

- This holds for any normed space and measure assigning zero mass to hyperplanes.
Proof for general ν

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling π is not induced by a transport map then there is a compact set $K \subset \text{supp}(p_1)_*\pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

$$\Gamma^{(1)} \cup \Gamma^{(2)}$$

is cyclically monotone where $\Gamma^{(i)} = \text{graph}_K T_i$.

Lemma

If (M, d) is non-branching then

$$\Gamma^{(1)}_t \cap \Gamma^{(2)}_t = \emptyset$$

and

$$m(K) \geq \limsup_{t \to 0} \left[m(\Gamma^{(1)}_t) + m(\Gamma^{(2)}_t) \right]$$
Proof for general ν

Theorem (Selection dichotomy, see e.g. [K. ’17])

If some optimal coupling π is not induced by a transport map then there is a compact set $K \subset \text{supp}(p_1)_*\pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

$$\Gamma^{(1)} \cup \Gamma^{(2)}$$

is cyclically monotone where $\Gamma^{(i)} = \text{graph}_K T_i$.

Lemma

If (M,d) is non-branching then

$$\Gamma^{(1)}_t \cap \Gamma^{(2)}_t = \emptyset$$

and

$$m(K) \geq \limsup_{t \to 0} \left[m(\Gamma^{(1)}_t) + m(\Gamma^{(2)}_t) \right]$$
Proof for general ν

Theorem (Selection dichotomy, see e.g. [K. '17])

If some optimal coupling π is not induced by a transport map then there is a compact set $K \subset \text{supp}(p_1)_* \pi$ with $\pi(K \times M) > 0$ and two continuous maps $T_1, T_2 : M \to M$ with $T_1(K) \cap T_2(K) = \emptyset$ such that

$$\Gamma^{(1)} \cup \Gamma^{(2)}$$

is cyclically monotone where $\Gamma^{(i)} = \text{graph}_K T_i$.

Lemma

If (M, d) is non-branching then

$$\Gamma^{(1)}_t \cap \Gamma^{(2)}_t = \emptyset$$

and

$$m(K) \geq \limsup_{t \to 0} \left[m(\Gamma^{(1)}_t) + m(\Gamma^{(2)}_t) \right]$$
Lemma

If \((M, d, m)\) is non-branching and qualitatively non-degenerate then

\[
m(\Gamma_t^{(i)}) \geq f(t)m(K).
\]

Idea of proof.

Let \(\nu_n \rightarrow (T_i)_*\mu|_K\) with \(\nu_n\) discrete then eventually

\[
\Gamma_t^{(i),n} \subseteq (\Gamma_t^{(i)})_\varepsilon,
\]

so that

\[
m(\Gamma_t^{(i)}) \geq \limsup_{n \rightarrow 0} m(\Gamma_t^{(i),n}) \geq f(t)m(K).
\]
Lemma

If \((M, d, m)\) is non-branching and qualitatively non-degenerate then

\[
m(\Gamma_t^{(i)}) \geq f(t)m(K).
\]

Idea of proof.

Let \(\nu_n \to (T_i)_\# \mu|_K\) with \(\nu_n\) discrete then eventually

\[
\Gamma_t^{(i),n} \subseteq (\Gamma_t^{(i)})_\epsilon
\]

so that

\[
m(\Gamma_t^{(i)}) \geq \limsup_{n \to 0} m(\Gamma_t^{(i),n}) \geq f(t)m(K).
\]
• If the claim was wrong then using we arrive at the following contradiction

\[
m(K) \geq \limsup_{t \to 0} m(\Gamma_{t}^{(1)}) + m(\Gamma_{t}^{(2)}) \\
\geq 2 \limsup_{t \to 0} f(t)m(K) = 2C_{R}m(K).
\]

• Thus, any optimal transport between \(\mu \ll m \) and arbitrary \(\nu \) is induced by a transport map.
If the claim was wrong then using we arrive at the following contradiction

\[m(K) \geq \limsup_{t \to 0} m(\Gamma_t^{(1)}) + m(\Gamma_t^{(2)}) \geq 2 \limsup_{t \to 0} f(t) m(K) = 2C_R m(K). \]

Thus, any optimal transport between \(\mu \ll m \) and arbitrary \(\nu \) is induced by a transport map.
Ingredients of the proof

- (weak) non-branching property

\[m(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0 \]
Ingredients of the proof

• (weak) non-branching property

\[m(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0 \]
Ingredients of the proof

• (weak) non-branching property

\[m(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0 \]

• qualitative non-degeneracy
Ingredients of the proof

- (weak) non-branching property

$$m(\Gamma_t^{(1)} \cap \Gamma_t^{(2)}) = 0$$

- qualitative non-degeneracy \implies not an optimal transport property
Partial extension to $p = 1$, see e.g. [K.-Suhr 18]

- For simplicity let $M = \mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is d-cyclically monotone then for all distinct geodesics γ, η with

$$(\gamma_0, \gamma_1), (\eta_0, \eta_1) \in \Gamma$$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\text{supp} \mu \times \text{supp} \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any d-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.
Partial extension to $p = 1$, see e.g. [K.-Suhr 18]

- For simplicity let $M = \mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is d-cyclically monotone then for all distinct geodesics γ, η with

$$(\gamma_0, \gamma_1), (\eta_0, \eta_1) \in \Gamma$$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\text{supp } \mu \times \text{supp } \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any d-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.
Partial extension to $p = 1$, see e.g. [K.-Suhr 18]

- For simplicity let $M = \mathbb{R}^n$

Lemma

If $\Gamma \subset \{x_n < 0\} \times \{x_n = 0\}$ is d-cyclically monotone then for all distinct geodesics γ, η with

$$(\gamma_0, \gamma_1), (\eta_0, \eta_1) \in \Gamma$$

it holds $\gamma_t \neq \eta_t$.

Corollary

Assume $\text{supp } \mu \times \text{supp } \nu \subset \{x_n < 0\} \times \{x_n = 0\}$ then any d-optimal coupling is induced by a transport map.

Remark

Works for non-bran., qual. non-deg. spaces if ν is supported in a level set of a dual solution.
Lorentzian setting [K.-Suhr ’18]

- Lagrangian for $p \in (0, 1]$
 \[
 \mathcal{L}_p(v) = \begin{cases}
 -(-g(v,v))^\frac{p}{2} & v \in \bar{C} \\
 \infty & \text{otherwise}
 \end{cases}
 \]
 induces cost function $c_p : M \times M \to (-\infty, 0] \cup \{\infty\}$

- For $p \in (0, 1)$, geodesics connecting $(x, y) \in c_p^{-1}((-\infty, 0))$ are non-branching.

- For $p = 1$ and hyperbolic spacetimes, introduce smooth time function $\tau : M \to \mathbb{R}$ with
 \[
 \forall v \in \bar{C} : d\tau(v) > 0
 \]
 and then all causal geodesics can be parametrized \textit{time-affinely} and geodesics with endpoints in
 \[
 \{\tau < a\} \times \{\tau = a\}
 \]
 are non-branching.
Lorentzian setting \[\text{[K.-Suhr '18]}\]

- Lagrangian for \(p \in (0, 1] \)

\[
\mathcal{L}_p(v) = \begin{cases}
-(−g(v,v))^\frac{p}{2} & v \in \bar{C} \\
\infty & \text{otherwise}
\end{cases}
\]

induces cost function \(c_p : M \times M \rightarrow (-\infty, 0] \cup \{\infty\} \)

- For \(p \in (0, 1) \), geodesics connecting \((x, y) \in c_p^{-1}((−\infty, 0))\) are non-branching.

- For \(p = 1 \) and hyperbolic spacetimes, introduce smooth time function \(\tau : M \rightarrow \mathbb{R} \) with

\[
\forall v \in \bar{C} : d\tau(v) > 0
\]

and then all causal geodesics can be parametrized \textit{time-affinely} and geodesics with endpoints in

\[
\{\tau < a\} \times \{\tau = a\}
\]

are non-branching.
Lorentzian setting [K.-Suhr ’18]

- Lagrangian for \(p \in (0, 1] \)

\[
\mathcal{L}_p(v) = \begin{cases}
-(−g(v,v))^{\frac{p}{2}} & v \in \bar{C} \\
\infty & \text{otherwise}
\end{cases}
\]

induces cost function \(c_p : M \times M \rightarrow (-\infty, 0] \cup \{\infty\} \)

- For \(p \in (0, 1) \), geodesics connecting \((x, y) \in c_p^{-1}((-\infty, 0))\) are non-branching.

- For \(p = 1 \) and hyperbolic spacetimes, introduce smooth time function \(\tau : M \rightarrow \mathbb{R} \) with

\[
\forall v \in \bar{C} : d\tau(v) > 0
\]

and then all causal geodesics can be parametrized time-affinely and geodesics with endpoints in

\[
\{\tau < a\} \times \{\tau = a\}
\]

are non-branching.
Spaces with good transport behavior (I)

• Assume \((M, d, \mathfrak{m})\) has good transport behavior \((GTB)_p\)

 • for every \(\mu_0 \ll \mathfrak{m}\) and \(\mu_1\) the optimal coupling is unique and induced by a transport map
 • for every \(\mu_0 \ll \mathfrak{m}\) and \(\mu_1\) the geodesic \(t \mapsto \mu_t\) is unique
 • if, in addition, \(\mathfrak{m}\) is qual. non-deg. then \(\mu_t \ll \mathfrak{m}\)
• Assume \((M, d, \mathbf{m})\) has good transport behavior \((GTB)_p\)

• for every \(\mu_0 \ll \mathbf{m}\) and \(\mu_1\) the optimal coupling is unique and induced by a transport map

• for every \(\mu_0 \ll \mathbf{m}\) and \(\mu_1\) the geodesic \(t \mapsto \mu_t\) is unique

• if, in addition, \(\mathbf{m}\) is qual. non-deg. then \(\mu_t \ll \mathbf{m}\)
Spaces with good transport behavior (I)

- Assume \((M, d, m)\) has good transport behavior \((GTB)_p\)
 - for every \(\mu_0 \ll m\) and \(\mu_1\) the optimal coupling is unique and induced by a transport map
 - for every \(\mu_0 \ll m\) and \(\mu_1\) the geodesic \(t \mapsto \mu_t\) is unique
 - if, in addition, \(m\) is qual. non-deg. then \(\mu_t \ll m\)
Spaces with good transport behavior (I)

- Assume (M, d, m) has good transport behavior $(GTB)_p$
 - for every $\mu_0 \ll m$ and μ_1 the optimal coupling is unique and induced by a transport map
 - for every $\mu_0 \ll m$ and μ_1 the geodesic $t \mapsto \mu_t$ is unique
 - if, in addition, m is qual. non-deg. then $\mu_t \ll m$
Obstructions to good transport behavior (I)

- Let \(T = [0, 1]_1 \cup [0, 1]_3 \cup [0, 1]_3 \) be the tripod glued at 0.
- \((T,d,m)\) is a \(CAT(0) \)-space, but will never have good transport behavior.
Obstructions to good transport behavior (I)

- Let $T = [0, 1]_1 \cup [0, 1]_3 \cup [0, 1]_3$ be the tripod glued at 0.
- (T, d, m) is a $CAT(0)$-space, but will never have good transport behavior.
Essentially non-branching (I)

- A subset of geodesics $\mathcal{G} \subset \text{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm ’14])

The space (M, d, m) is essentially non-branching $(\text{ENB})_p$ if for every optimal dynamical coupling σ with $(e_0) \ast \sigma, (e_1) \ast \sigma \ll m$ is concentrated on a non-branching set.

- May alter condition: For each $t_1, \ldots, t_n \in (0,1)$, σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds $\gamma_{t_i} \neq \eta_{t_i}$.
Essentially non-branching (I)

- A subset of geodesics $\mathcal{G} \subset \text{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm ’14])

The space (M,d,\mathfrak{m}) is essentially non-branching $(\text{ENB})_p$ if for every optimal dynamical coupling σ with $(e_0)_\ast \sigma, (e_1)_\ast \sigma \ll \mathfrak{m}$ is concentrated on a non-branching set.

- May alter condition: For each $t_1, \ldots, t_n \in (0,1)$, σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds $\gamma_{t_i} \neq \eta_{t_i}$.
Essentially non-branching (I)

- A subset of geodesics $\mathcal{G} \subset \text{Geo}_{[0,1]}(M,d)$ is called non-branching if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ or $\gamma_1 = \eta_1$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Definition ([Rajala-Sturm '14])

The space (M,d,μ) is essentially non-branching (ENB_p) if for every optimal dynamical coupling σ with $(e_0)_*\sigma, (e_1)_*\sigma \ll \mu$ is concentrated on a non-branching set.

- May alter condition: For each $t_1, \ldots, t_n \in (0,1)$, σ is concentrated on a cyclically monotone set Γ such that for all distinct geodesics γ and η with endpoints in Γ it holds $\gamma_{t_i} \neq \eta_{t_i}$.
A subset of geodesics $G \subset \text{Geo}_{[0,1]}(M,d)$ is called non-branching to the left if for all $\gamma, \eta \in G$ with $\gamma_0 = \eta_0$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Theorem ([K. ’17])

If (M,d,m) has good transport behavior then any dynamical coupling σ with $(e_0)_* \sigma \ll m$ is concentrated on a set that is non-branching to the left. In particular, (M,d,m) is essentially non-branching $(\text{ENB})_p$.
• A subset of geodesics $\mathcal{G} \subset \text{Geo}_{0,1}(M,d)$ is called non-branching to the left if for all $\gamma, \eta \in \mathcal{G}$ with $\gamma_0 = \eta_0$ it holds whenever $\gamma_t = \eta_t$ for some $t \in (0,1)$ it holds $\gamma_t = \eta_t$ for all $t \in [0,1]$.

Theorem ([K. ’17])

If (M,d,m) has good transport behavior then any dynamical coupling σ with $(e_0)_* \sigma \ll m$ is concentrated on a set that is non-branching to the left. In particular, (M,d,m) is essentially non-branching $(\text{ENB})_p$.
Choose three mutually singular measures m_1, m_2 and m_3 on $[0,1]$.

For the tripod (T,d), regard them as measures on $[0,1_i]$ and set $m = m_1 + m_2 + m_3$

Observations:
- (T,d,m) is essentially non-branching
- all optimal couplings π with $(p_i)_\ast \pi \ll m$ are induced by transport map
Choose three mutually singular measures m_1, m_2, and m_3 on $[0, 1]$.

For the tripod (T, d), regard them as measures on $[0, 1_i]$ and set $m = m_1 + m_2 + m_3$.

Observations:

- (T, d, m) is essentially non-branching
- all optimal couplings π with $(p_i)_* \pi \ll m$ are induced by transport map.
Theorem ([K. ’17])

If (M, d, m) is essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then it has good transport behavior $(GTB)_p$.
Idea of the proof

- As $\nu \not\ll m$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $\left(e_\epsilon\right)_*\sigma, \left(e_{1-\epsilon}\right)_*\sigma \ll m$ with
 \[
 m|_{\Gamma_{\epsilon, 1-\epsilon}} \ll \left(e_\epsilon\right)_*\sigma \ll m|_{\Gamma_{\epsilon, 1-\epsilon}}
 \]
 for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})_*\sigma(\Gamma) = 1$.
- Essentially non-branching implies
 \[
 m(\Gamma^{(1)}_\epsilon \cap \Gamma^{(2)}_\epsilon) = 0
 \]
 when $\Gamma^{(1)}$ is given via the Selection Dichotomy.
- A proof a la Cavalletti–Huesmann gives the result.
Idea of the proof

- As \(\nu \not\ll m \) essentially non-branching cannot be directly used
- Construct dynamical optimal coupling \(\sigma \) with \((e_\epsilon) \ast \sigma, (e_1 - \epsilon) \ast \sigma \ll m \) with

\[
\left. m \right|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_\epsilon) \ast \sigma \ll \left. m \right|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}
\]

for a cyclically monotone set \(\Gamma \) with \((e_0, e_1 - \epsilon) \ast \sigma(\Gamma) = 1 \).
- Essentially non-branching implies

\[
m(\Gamma_{\epsilon}^{(1)} \cap \Gamma_{\epsilon}^{(2)}) = 0
\]

when \(\Gamma^{(1)} \) is given via the Selection Dichotomy.
- A proof a la Cavalletti–Huesmann gives the result.
Idea of the proof

- As $\nu \ll m$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with
 $$(e_\epsilon)^*\sigma, (e_{1-\epsilon})^*\sigma \ll m$$
 with
 $$m|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}} \ll (e_\epsilon)^*\sigma \ll m|_{\Gamma_{\frac{\epsilon}{1-\epsilon}}}$$
 for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})^*\sigma(\Gamma) = 1$.

- Essentially non-branching implies
 $$m(\Gamma^{(1)}_\epsilon \cap \Gamma^{(2)}_\epsilon) = 0$$
 when $\Gamma^{(1)}$ is given via the Selection Dichotomy.

- A proof a la Cavalletti–Huesmann gives the result.
Idea of the proof

• As $\nu \ll m$ essentially non-branching cannot be directly used.

• Construct dynamical optimal coupling σ with

 $$(e_\epsilon)\ast\sigma, (e_{1-\epsilon})\ast\sigma \ll m$$

 with

 $$m|_{\Gamma} \ll (e_\epsilon)\ast\sigma \ll m|_{\Gamma}$$

 for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})\ast\sigma(\Gamma) = 1$.

• Essentially non-branching implies

 $$m(\Gamma^{(1)}_\epsilon \cap \Gamma^{(2)}_\epsilon) = 0$$

 when $\Gamma^{(1)}$ is given via the Selection Dichotomy.

• A proof a la Cavalletti–Huesmann gives the result.
Idea of the proof

- As $\nu \ll m$ essentially non-branching cannot be directly used
- Construct dynamical optimal coupling σ with $(e_\epsilon)^*\sigma, (e_{1-\epsilon})^*\sigma \ll m$ with

$$m \big|_{\Gamma^{\epsilon} \frac{1}{1-\epsilon}} \ll (e_\epsilon)^*\sigma \ll m \big|_{\Gamma^{\epsilon} \frac{1}{1-\epsilon}}$$

for a cyclically monotone set Γ with $(e_0, e_{1-\epsilon})^*\sigma(\Gamma) = 1$.
- Essentially non-branching implies

$$m(\Gamma^{(1)}_\epsilon \cap \Gamma^{(2)}_\epsilon) = 0$$

when $\Gamma^{(1)}$ is given via the Selection Dichotomy.
- A proof a la Cavalletti–Huesmann gives the result.
Intermediate summary

- Assume \((M, d, m)\) essentially non-branching and qualitatively non-degenerate
- Let \(\mu_0 = f_0 m\) and \(\mu_1\) arbitrary
- Conclusion:
 1. (uniqueness) unique optimal dynamical coupling \(\sigma\)
 2. (good transport behavior)

\[(e_0, e_1)_* \sigma = (\text{id} \times T_1)_* \mu_0\]

3. (strong interpolation property)

\[(e_t)_* \sigma = f_t m\]

4. (strong bounded density property)

\[f_t(\gamma_t) \leq \frac{1}{f_R(t)} f_0(\gamma_0).\]
Theorem ([K. ’17])

Assume \((M, d, m_1)\) and \((M, d, m_2)\) are both essentially non-branching \((ENB)_p\) and qualitatively non-degenerate then \(m_1\) and \(m_2\) are mutually absolutely continuous.

Corollary

For \(i = 1, 2\) let \((M, d, m_i)\) be RCD\((K_i, N_i)\)-spaces with \(N_i < \infty\). Then \(m_1\) and \(m_2\) are mutually absolutely continuous.
Theorem ([K. ’17])

Assume \((M,d,m_1)\) and \((M,d,m_2)\) are both essentially non-branching \((ENB)_p\) and qualitatively non-degenerate then \(m_1\) and \(m_2\) are mutually absolutely continuous.

Corollary

For \(i = 1, 2\) let \((M,d,m_i)\) be RCD\((K_i,N_i)\)-spaces with \(N_i < \infty\). Then \(m_1\) and \(m_2\) are mutually absolutely continuous.
Theorem ([K. '17])

Assume (M,d,m_1) and (M,d,m_2) are both essentially non-branching $(ENB)_p$ and qualitatively non-degenerate then m_1 and m_2 are mutually absolutely continuous.

Corollary

For $i = 1, 2$ let (M,d,m_i) be $\text{RCD}(K_i,N_i)$-spaces with $N_i < \infty$. Then m_1 and m_2 are mutually absolutely continuous.
1st Proof of the Measure Rigidity (I)

- Decompose $m_2 = f m_1 + m_2^s$
- Assume, by contradiction, $m_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property.
- The following claim implies gives a contradiction.

Claim

m_2^s is both essentially non-branching and qualitatively non-degenerate.
1st Proof of the Measure Rigidity (I)

- Decompose $m_2 = fm_1 + m_2^s$
- Assume, by contradiction, $m_2^s \neq 0$.
- Observation: We must have $f \neq 0$ by strong interpolation property.
- The following claim implies gives a contradiction.

Claim

m_2^s is both essentially non-branching and qualitatively non-degenerate.
• Decompose $m_2 = fm_1 + m_s^2$

• Assume, by contradiction, $m_s^2 \neq 0$.

• Observation: We must have $f \neq 0$ by strong interpolation property

• The following claim implies gives a contradiction

Claim

m_s^2 is both essentially non-branching and qualitatively non-degenerate
1st Proof of the Measure Rigidity (I)

• Decompose $m_2 = f m_1 + m_2^s$

• Assume, by contradiction, $m_2^s \neq 0$.

• Observation: We must have $f \neq 0$ by strong interpolation property

• The following claim implies gives a contradiction

Claim

m_2^s is both essentially non-branching and qualitatively non-degenerate
1st Proof of the Measure Rigidity (I)

- Decompose \(m_2 = f m_1 + m_2^s \)
- Assume, by contradiction, \(m_2^s \neq 0 \).
- Observation: We must have \(f \neq 0 \) by strong interpolation property
- The following claim implies gives a contradiction

Claim

\(m_2^s \) is both essentially non-branching and qualitatively non-degenerate
1st Proof (II) - proof of the claim

• Note if $m_1(A_t,x) = m_1(A) = 0$ and then

$$m^s_2(A_t,x) = m_2(A_t,x) \geq f_R(t)m_2(A) = f_R(t)m^s_2(A).$$

• Observation: Since $m_2(A_t,x) > 0$ for all $t \in (0,1]$, it is possible to show that for m_2-a.e. $x \in A$ there is a unique geodesic $\gamma(x)$ such that

$$x \in \gamma(x)((0,1))$$

Lemma

There is $K \subset \subset A$ with $m_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll m_2$, $\mu_{t_0} = \frac{1}{m_2(K)}m_2|_K$ and $\mu_1 = \delta_x$.

• Lemma implies if $\mu_{t_0} \perp m_1$ then $\mu_t \perp m_1$ for all $t \in [0,1)$ which yields the claim.
Note if $m_1(A_{t,x}) = m_1(A) = 0$ and then

$$m^s_2(A_{t,x}) = m_2(A_{t,x}) \geq f_R(t)m_2(A) = f_R(t)m^s_2(A).$$

Observation: Since $m_2(A_{t,x}) > 0$ for all $t \in (0,1]$, it is possible to show that for m_2-a.e. $x \in A$ there is a unique geodesic $\gamma(x)$ such that

$$x \in \gamma(x)((0,1))$$

** Lemma **

There is $K \subset \subset A$ with $m_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll m_2$, $\mu_{t_0} = \frac{1}{m_2(K)} m_2|_K$ and $\mu_1 = \delta_x$.

Lemma implies if $\mu_{t_0} \perp m_1$ then $\mu_t \perp m_1$ for all $t \in [0,1)$ which yields the claim.
1st Proof (II) - proof of the claim

- Note if \(m_1(A_t,x) = m_1(A) = 0 \) and then

\[
m_2^s(A_t,x) = m_2(A_t,x) \geq f_R(t)m_2(A) = f_R(t)m_2^s(A).
\]

- Observation: Since \(m_2(A_t,x) > 0 \) for all \(t \in (0,1] \), it is possible to show that for \(m_2 \)-a.e. \(x \in A \) there is a unique geodesic \(\gamma(x) \) such that

\[
x \in \gamma(x)((0,1))
\]

Lemma

There is \(K \subset A \) with \(m_2(K) > 0 \) and \(t \mapsto \mu_t \) geodesic with \(\mu_1 \ll m_2, \mu_{t_0} = \frac{1}{m_2(K)}m_2|_K \) and \(\mu_1 = \delta_x \).

- Lemma implies if \(\mu_{t_0} \perp m_1 \) then \(\mu_t \perp m_1 \) for all \(t \in [0,1) \) which yields the claim.
1st Proof (II) - proof of the claim

- Note if $m_1(A_t,x) = m_1(A) = 0$ and then

$$m^s_2(A_t,x) = m_2(A_t,x) \geq f_R(t)m_2(A) = f_R(t)m^s_2(A).$$

- Observation: Since $m_2(A_t,x) > 0$ for all $t \in (0,1]$, it is possible to show that for m_2-a.e. $x \in A$ there is a unique geodesic $\gamma^{(x)}$ such that

$$x \in \gamma^{(x)}((0,1))$$

Lemma

*There is $K \subset A$ with $m_2(K) > 0$ and $t \mapsto \mu_t$ geodesic with $\mu_1 \ll m_2$, $\mu_{t_0} = \frac{1}{m_2(K)}m_2|_K$ and $\mu_1 = \delta_x$.***

- Lemma implies if $\mu_{t_0} \perp m_1$ then $\mu_t \perp m_1$ for all $t \in [0,1)$ which yields the claim.
Assume $m^s_s \neq 0$ and choose $\mu_0 = \frac{1}{m^s_2(K)}m^s_2|_K$ and $\mu_1 \ll m_1$

By strong intersection property

$$\mu_t \ll m_1, \mu_t \ll m_2$$

hence $\mu_t \perp m^s_2$

By bounded density property for $\mu_t = f_t m_2$

$$\|f_t\|_\infty \leq \frac{1}{f_R(t)m^s_2(K)}$$

Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17])

If $\mu = \frac{1}{m(K)}m|_K$ and $\mu_n = f_n m$ with $W_p(\mu_n, \mu) \to 0$ and $\|f_n\|_\infty \leq C$ then $\mu \not\perp \mu_n$ for all sufficiently large n.

Optimal transport and non-branching geodesics

Martin Kell

32/33
• Assume $m^S_s \neq 0$ and choose $\mu_0 = \frac{1}{m^S_2(K)} m^S_2 \mid_K$ and $\mu_1 \ll m_1$

• By strong intersection property

\[\mu_t \ll m_1, \mu_t \ll m_2 \]

hence $\mu_t \perp m^S_2$

• By bounded density property for $\mu_t = f_t m_2$

\[\|f_t\|_\infty \leq \frac{1}{f_R(t) m^S_2(K)} \]

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection \([CH \ '14, K. \ '17]\))

If $\mu = \frac{1}{m(K)} m \mid_K$ and $\mu_n = f_n m$ with $W_p(\mu_n, \mu) \to 0$ and $\|f_n\|_\infty \leq C$ then $\mu \nabla \mu_n$ for all sufficiently large n.

Optimal transport and non-branching geodesics
• Assume $m^s_s \neq 0$ and choose $\mu_0 = \frac{1}{m^s_2(K)} m^s_2|_K$ and $\mu_1 \ll m_1$

• By strong intersection property

$$\mu_t \ll m_1, \mu_t \ll m_2$$

hence $\mu_t \perp m^s_2$

• By bounded density property for $\mu_t = f_t m_2$

$$\|f_t\|_\infty \leq \frac{1}{f_R(t)m^s_2(K)}$$

• Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17])

If $\mu = \frac{1}{m(K)} m|_K$ and $\mu_n = f_n m$ with $W_p(\mu_n, \mu) \to 0$ and $\|f_n\|_\infty \leq C$ then $\mu \not\perp \mu_n$ for all sufficiently large n.
2nd Proof of the Measure Rigidity

- Assume \(m_s \neq 0 \) and choose \(\mu_0 = \frac{1}{m_s(K)} m_s \big|_K \) and \(\mu_1 \ll m_1 \)
- By strong intersection property

\[
\mu_t \ll m_1, \mu_t \ll m_2
\]

hence \(\mu_t \perp m_2 \)
- By bounded density property for \(\mu_t = f_t m_2 \)

\[
\|f_t\|_\infty \leq \frac{1}{f_R(t)m_s^2(K)}
\]

- Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17])

If \(\mu = \frac{1}{m(K)} m \big|_K \) and \(\mu_n = f_n m \) with \(W_p(\mu_n, \mu) \to 0 \) and \(\|f_n\|_\infty \leq C \) then \(\mu \nabla \mu_n \) for all sufficiently large \(n \).
2nd Proof of the Measure Rigidity

- Assume $m^s_s \neq 0$ and choose $\mu_0 = \frac{1}{m^s_2(K)} m^s_2|_K$ and $\mu_1 \ll m_1$

- By strong intersection property

$$\mu_t \ll m_1, \mu_t \ll m_2$$

hence $\mu_t \perp m^s_2$

- By bounded density property for $\mu_t = f_t m_2$

$$\|f_t\|_{\infty} \leq \frac{1}{f_R(t)m^s_2(K)}$$

- Arrive at contradiction using the following lemma.

Lemma (Self-intersection [CH '14, K. '17])

If $\mu = \frac{1}{m(K)} m|_K$ and $\mu_n = f_n m$ with $W_p(\mu_n, \mu) \to 0$ and $\|f_n\|_{\infty} \leq C$ then $\mu \not\perp \mu_n$ for all sufficiently large n.
Thank you for your attention