Direkt zum Inhalt | Direkt zur Navigation

Fachbereich Mathematik

Sektionen

Benutzerspezifische Werkzeuge

Blatt 14 Tex

TeX document icon SS2016_Blatt14.tex — TeX document, 2 kB (2674 bytes)

Dateiinhalt

\documentclass[12pt]{article}
%
\textheight 24cm
\hoffset-2cm
\voffset-2cm
%
\usepackage[ngerman]{babel}
%\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{amsmath}
% 
\textwidth17cm
%
\pagestyle{empty}
%
\parskip2ex
\parindent0pt

%
\def\oacc#1{\ifmmode\mathaccent23{#1}\else\accent23{#1}\fi}
%
\newcommand{\sub}{\subseteq}
\newcommand{\ve}{\varepsilon}
\newcommand{\C}{\mathbb C}
\newcommand{\R}{\mathbb R}
\newcommand{\N}{\mathbb N}
\newcommand{\Q}{\mathbb Q}
\newcommand{\Z}{\mathbb Z}
\newcommand{\grad}{\mathrm{grad}}
\DeclareMathOperator{\arsinh}{arsinh}
\DeclareMathOperator{\arcosh}{arcosh}
\DeclareMathOperator{\Arctan}{Arctan}
\DeclareMathOperator{\Mat}{Mat}
\DeclareMathOperator{\spur}{spur}
\DeclareMathOperator{\re}{Re}
\DeclareMathOperator{\im}{Im}
\DeclareMathOperator{\Log}{Log}

\usepackage{graphicx}
\usepackage{stmaryrd}

\newcommand*{\LargerCdot}{\raisebox{-0.25ex}{\scalebox{1.2}{$\cdot$}}}

%
%\input{defa}
%
%%%%%%%%%%%%%%%%%%%%%%%  Kopf des Blattes  %%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\hbox{%
 \vbox{%%
    \hbox{\makebox[5.1cm][l]{Mathematisches Institut}}
    \hbox{\makebox[5.1cm][l]{der Universit\"at T\"ubingen}}
    
    \vspace{0.5cm}
    
    \hbox{\makebox[5.1cm][l]{Prof. Dr. Frank Loose,}}
    \hbox{\makebox[5.1cm][l]{Pirmin Vollert}}
}%
\hspace{10.9cm}%
 \vbox{%
 \hbox{\makebox[1.0cm][r]{SS 2016}}
 \hbox{\makebox[1.0cm][r]{22.07.2016}}
 \hbox{\makebox[1.0cm][r]{Blatt 14}}
}}
\vspace{0.1cm}
%\begin{document}
\small\normalsize
\begin{center}{\Large\bfseries \"Ubungen zu 
\glqq Analysis IV\grqq}
\end{center}
\vspace{0.1cm}
%
%%%%%%%%%%%%%%%%%%%%% Ende des Kopfes %%%%%%%%%%%%%%%%%%%%%%%%%
%

%

{\bfseries Aufgabe 1:} Bestimmen Sie die isolierten Singularit"aten von
\begin{align*}
f:\C\setminus\{0,\pi\}\rightarrow\C:z\mapsto\frac{1}{z(z-\pi)^2}
\intertext{und}
g:\C\setminus\{2\pi ik:k\in\Z\}\rightarrow\C:z\mapsto\frac{1}{z(e^z-1)},
\end{align*}
und berechnen Sie dort jeweils die Residuen.\\[1em]
{\bfseries Aufgabe 2:} Sei $D\subseteq \C$ offen, $f,g:D\rightarrow\C$ holomorph, $p\in D$ die einzige Nullstelle von $g$, es gelte $g'(p)\neq 0$ und sei
\begin{align*}
h:D\setminus\{p\}\rightarrow\C:z\mapsto \frac{f(z)}{g(z)}.
\end{align*}
Zeigen Sie $\text{Res}_ph=\frac{f(p)}{g'(p)}$.\\[1em]
{\bfseries Aufgabe 3:} Berechnen Sie mit Hilfe des Residuensatzes folgende Integrale:
\begin{align*}
\int_{-\infty}^\infty\frac{x^2}{1+x^4}\,dx\quad\text{und}\quad\int_0^{\pi/2}\frac{1}{1+\sin^2x}\,dx.
\end{align*}
(\textit{Hinweis:} Schreiben Sie das zweite Integral als komplexes Wegintegral "uber den Einheitskreis.)\\[1em]
{\bfseries Keine Abgabe.} 

%
\end{document}
Analysis IV

Dozent

Prof. Dr. Frank Loose

 

Stundenplan


Skripte

Mathematik für Physiker IV – Funktionentheorie


Übungen

Blatt 0 [pdf]

Blatt 1 [pdf]

Blatt 2 [pdf]

Blatt 3 [pdf]

Blatt 4 [pdf]

Blatt 5 [pdf,tex]

Blatt 6 [pdf,tex]

Blatt 7 [pdf,tex]

Blatt 8 [pdf,tex]

Blatt 9 [pdf.tex]

Blatt 10 [pdf,tex]

Blatt 11 [pdf,tex]

Blatt 12 [pdf,tex]

Blatt 13 [pdf,tex]

Blatt 14 [pdf,tex]

Klausur [pdf]


Übungsgruppen

Gruppe 1
Donnerstag 8-10 Uhr, S9
Jonathan Walz
Gruppe 2
Donnerstag 12-14 Uhr, S9
Raoul Schlotterbeck
Gruppe 3
Donnerstag 14-16 Uhr, S11
Tim Binz
Gruppe 4
Donnerstag 14-16 Uhr, S9
Florian Kranhold
Gruppe 5
Donnerstag 16-18 Uhr, S9
Florian Kranhold
Gruppe 6
Freitag 8-10 Uhr, S9
Felix Rexze
Gruppe 7
Freitag 14-16 Uhr, S9
Tim Binz
Gruppe 8
Freitag 14-16 Uhr, S10
Pirmin Vollert