NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, November 3rd, or on Tuesday, November 7th, at 12:05 pm.

- **1.** Finding p and q using n and $\phi(n)$.
 - (a) Given n and $\phi(n)$, show how you can find p and q if you know that n = pq. Write your answer in the form of a quadratic equation whose solutions are p and q.
 - (b) Let n = pq = 64777 and $\phi(n) = 64260$. Use your result from (a) to find p and q with the help of a calculator.
- **2.** We denote by \mathbb{Z}_n the additive group of the ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo *n*. This group is cyclic.
 - (a) Find all generators of \mathbb{Z}_{10} .
 - (b) Prove that a number $a \in \mathbb{Z}_n$ generates \mathbb{Z}_n if and only if gcd(a, n) = 1.
- **3.** Prove that
 - (a) $(\mathbb{Z}/8\mathbb{Z})^* \cong \mathbb{Z}_2 \times \mathbb{Z}_2;$
 - (b) $(\mathbb{Z}/16\mathbb{Z})^* \cong \mathbb{Z}_2 \times \mathbb{Z}_4.$
- **4.** Prove Legendre's theorem from the theory of continued fractions: Let $p, q \in \mathbb{N}$ with gcd(p,q) = 1. If $\left|x \frac{p}{q}\right| < \frac{1}{2q^2}$, then $\frac{p}{q}$ is a convergent for x.