NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, November 24th, at 12:05 pm.

1. Let x > 0 be a fixed real number. We consider a non-empty set of positive integers $S = \{a_1, a_2, \ldots, a_n\}$ so that

$$a_1 < a_2 < \dots < a_n \le x$$

and neither of a_i 's divides the product of the other elements in S. Prove that then $n \leq \pi(x)$, where $\pi(x)$ is the prime-counting function.

2. For n = 13, find the smallest prime r that satisfies the following inequality:

$$\operatorname{ord}_r(n) > \log_2^2 n.$$

Explain your solution.

3. Find all pairs of integers (m, n) that satisfy the equation:

$$(5+3\sqrt{2})^m = (3+5\sqrt{2})^n.$$

Justify your answer.

- 4. Let p be a prime satisfying $p \equiv 3 \pmod{4}$ and suppose that a is a quadratic residue modulo p.
 - (a) Show that $x = a^{(p+1)/4}$ is a solution to the congruence

 $x^2 \equiv a \pmod{p}.$

(b) Find all solutions to the following congruence that lie in the interval between 1 and 163:

$$x^2 \equiv 74 \pmod{163}.$$

Show all work.