NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, January 12th, at 12:05 pm.

- 1. Show that each of the following elliptic curves over \mathbb{Q} has the stated torsion group $E(\mathbb{Q})_{\text{tors}}$:
 - (a) $y^2 = x^3 x; \quad \mathbb{Z}_2 \oplus \mathbb{Z}_2.$ (b) $y^2 = x^3 + 1; \quad \mathbb{Z}_6.$
- **2.** Let *E* be the curve $y^2 = x^3 + 2x + 1$ over the field \mathbb{F}_7 . Prove that this curve is elliptic (i.e., nonsingular) and that $E(\mathbb{F}_7) \cong \mathbb{Z}_5$. Choose a generator *g* of $E(\mathbb{F}_7)$ and write each element of this group as kg for some *k*. Do not forget that $\mathcal{O} \in E(\mathbb{F}_7)$.
- **3.** Let E_c be the elliptic curve given by $y^2 = x^3 + 2x + c$ over the field \mathbb{F}_7 . Find a parameter c so that
 - (a) $\#E_c(\mathbb{F}_7) = 6$,

(b)
$$\#E_c(\mathbb{F}_7) = 8.$$

Are these groups cyclic?

4. Let E_b be the elliptic curve $y^2 = x^3 + bx + 1$ over the field \mathbb{F}_7 . Make a list of all possible groups $E_b(\mathbb{F}_7)$ giving their elements (points) and showing their structure (in terms of groups \mathbb{Z}_n or their direct sums). In each case verify that

$$|\#E(\mathbb{F}_p) - (p+1)| < 2\sqrt{p}$$

(Hasse's theorem).

I wish you a merry Christmas and a happy New Year!