NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, January 26th, at 12:05 pm.

- **1.** Let Γ be an additive subgroup of \mathbb{R}^m ; i. e., Γ is a subgroup of $(\mathbb{R}^m, +)$. Prove that the following four properties of Γ are equivalent.
 - (a) For every $v \in \Gamma$, there is a constant $\varepsilon_v > 0$ such that

 $\Gamma \cap \{a \in \mathbb{R}^m \mid ||a - v|| < \varepsilon_v\} = \{v\}.$

- (b) There is a constant $\delta > 0$ such that $\{v \in \Gamma \mid ||v|| < \delta\} = \{\mathbf{0}\}$, where **0** is the zero vector of \mathbb{R}^m .
- (c) There is a constant $\varepsilon > 0$ such that for every $v \in \Gamma$

 $\Gamma \cap \{a \in \mathbb{R}^m \mid ||a - v|| < \varepsilon\} = \{v\}.$

(d) For every constant r > 0, the set $\{v \in \Gamma \mid ||v|| \le r\}$ is finite.

A subgroup Γ of \mathbb{R}^m satisfying any of the above properties is called *discrete*.

- **2.** Let L be a subset of \mathbb{R}^n . Prove that the following two properties of L are equivalent:
 - (a) There is a basis $\{v_1, v_2, \ldots, v_n\}$ of \mathbb{R}^n so that

 $L = \{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_1, \alpha_2, \dots \alpha_n \in \mathbb{Z}\}.$

(b) L is a discrete subgroup of \mathbb{R}^n and $\operatorname{Span}(L) = \mathbb{R}^n$.

Remark. So any of the above two properties could be taken as a definition of a *lattice* of dimension n in \mathbb{R}^n .

3. Let L be the lattice given by the basis

 $\mathcal{B} = \{(3, 1, -2), (1, -3, 5), (4, 2, 1)\}.$

Which of the following sets of vectors are also bases for L? For those that are, express the new basis in terms of the basis \mathcal{B} , that is, find the change of basis matrix.

- (a) $\mathcal{B}_1 = \{(4, -2, 3), (3, 3, -3), (-2, -4, 7)\}.$
- (b) $\mathcal{B}_2 = \{(4, -2, 3), (6, 6, -6), (7, -1, 1)\}.$
- (c) $\mathcal{B}_3 = \{(5, 13, -13), (0, -4, 2), (7, -13, 18)\}.$
- **4.** Let $\{v_1, \ldots, v_n\}$ be a basis for a lattice $L \subset \mathbb{R}^m$, $n \leq m$. The *Gram matrix* of v_1, \ldots, v_n is the following matrix of dot products (= scalar products):

$$\operatorname{Gram}(v_1,\ldots,v_n) = \begin{pmatrix} v_1 \cdot v_1 & \cdots & v_1 \cdot v_n \\ \cdots & \cdots & \cdots \\ v_n \cdot v_1 & \cdots & v_n \cdot v_n \end{pmatrix}.$$

(a) Prove that

 $\det(\operatorname{Gram}(v_1,\ldots,v_n)) = (\det(L))^2.$

(b) Let $L \subset \mathbb{R}^4$ be the 3-dimensional lattice with basis

 $v_1 = (1, 0, 1, -1),$ $v_2 = (1, 2, 0, 4),$ $v_3 = (1, -1, 2, 1).$

Compute the Gram matrix of this basis and use it to compute det(L).