NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, February 2nd, at 12:05 pm.

- 1. Let $L \subset \mathbb{R}^2$ be the lattice given by the basis $\mathcal{B} = \{v_1, v_2\}$, where $v_1 = (213, -437)$ and $v_2 = (312, 105)$, and let w = (43127, 11349).
 - (a) Use Babai's algorithm to find a vector $v \in L$ that is close to w. Compute the distance ||v w||.
 - (b) Show that the vectors $v'_1 = (2937, -1555)$ and $v'_2 = (11223, -5888)$ also form a basis for the same lattice L.
 - (c) Use Babai's algorithm with the new basis $\mathcal{B}' = \{v'_1, v'_2\}$, where v'_1 and v'_2 are given in (b), to find a vector $v' \in L$ that is close to w. Compute the distance ||v' w|| and compare it with your answer from (a).
 - (d) Which basis is good, \mathcal{B} or \mathcal{B}' ? What is the value of the Hadamard ratio in both cases?
- 2. (a) For given numbers N, q, and polynomials a(x) and b(x), compute the convolution product $c = a \star b$ in the ring $R_q = \frac{(\mathbb{Z}/q\mathbb{Z})[x]}{(x^N 1)}$.
 - (i) N = 3, q = 7, a(x) = 1 + x, $b(x) = 2 + 4x + 2x^2$;

(ii)
$$N = 7$$
, $q = 3$, $a(x) = x + x^3$, $b(x) = x + x^2 + x^4 + x^6$.

(b) Let N = 5 and q = 3. Consider the following two polynomials in R_3 :

 $a(x) = 1 + x^2 + x^3$ and $b(x) = 1 + x^2 - x^3$.

One of these polynomials has an inverse in R_3 and the other does not. Compute the inverse that exists and explain why the other does not exist.

3. Let $a(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$, where p is a prime.

(a) Prove that $a(1) \equiv 0 \pmod{p}$ if and only if (x-1) | a(x) in $(\mathbb{Z}/p\mathbb{Z})[x]$.

- (b) Suppose that $a(1) \equiv 0 \pmod{p}$. Prove that a(x) is not invertible in R_p .
- 4. The guidelines for choosing NTRU public parameters (N, p, q, d) require that, in particular, gcd(p,q) = 1. Prove that if p|q, then it is very easy for Eve to decrypt the message without knowing the private key.