Möhle, Martin (2014) On hitting probabilities of beta coalescents and absorption times of coalescents that come down from infinity. ALEA Lat. Am. J. Probab. Math. Stat. 11, 141-159.

This file contains corrections concerning the article mentioned above. Moreover, two additional remarks are provided, which could be helpful for the reader.

Corrections.

1. Page 153, Case 3: The part '(see remark after Lemma 4.4)' should be removed, since there is no such remark. The statement that there exists a constant C such that $\left|b_{n}(k)-1\right| \leq C k / n$ is not correct, since, for $k=n-1$,

$$
b_{n}(n-1)=\frac{\Gamma(n) \Gamma(\alpha)}{\Gamma(n+\alpha-1)} \sim \Gamma(\alpha) n^{1-\alpha} \rightarrow \infty, \quad n \rightarrow \infty
$$

Therefore, the proof concerning Case 3 has to be modified from page 153, line 12 on as follows. Split the sum $S:=\sum_{k=m-1}^{n-1} b_{n}(k) a_{k-m+1} / k$ into two parts $S=S_{1}+S_{2}$, where

$$
S_{1}:=\sum_{k=m-1}^{\lfloor n / 2\rfloor} b_{n}(k) \frac{a_{k-m+1}}{k} \text { and } S_{2}:=\sum_{k=\lfloor n / 2\rfloor+1}^{n-1} b_{n}(k) \frac{a_{k-m+1}}{k} .
$$

Since $\alpha \in(0,1)$ it follows that $b_{n}(k)=\prod_{j=1}^{k}(n-j) /(n-j+\alpha-1)$ is non-decreasing in $k \in\{1, \ldots, n-1\}$ and, hence,

$$
\left|S_{2}\right| \leq \frac{b_{n}(n-1)}{n / 2} \sum_{k=m}^{\infty}\left|a_{k-m+1}\right|=2 \alpha \frac{b_{n}(n-1)}{n} \sim 2 \alpha \frac{\Gamma(\alpha)}{n^{\alpha}} \rightarrow 0, \quad n \rightarrow \infty
$$

Therefore, $S_{2} \rightarrow 0$ as $n \rightarrow \infty$. It remains to consider S_{1}. For $k \leq\lfloor n / 2\rfloor$ we have

$$
1 \leq b_{n}(k) \leq b_{n}(\lfloor n / 2\rfloor)=\frac{\Gamma(n) \Gamma(n-\lfloor n / 2\rfloor+\alpha-1)}{\Gamma(n-\lfloor n / 2\rfloor) \Gamma(n+\alpha-1)} \sim \frac{(n-\lfloor n / 2\rfloor)^{\alpha-1}}{n^{\alpha-1}} \sim 2^{1-\alpha}
$$

as $n \rightarrow \infty$. Thus it is allowed to apply dominated convergence to the sum S_{1} (interpreted as an integral with respect to the counting measure on $\{m-1, m, \ldots\}$), which yields

$$
S_{1}=\sum_{k=m-1}^{\lfloor n / 2\rfloor} b_{n}(k) \frac{a_{k-m+1}}{k} \rightarrow \sum_{k=m-1}^{\infty} \frac{a_{k-m+1}}{k}=\int_{0}^{1} \frac{t^{m-1}}{L_{\alpha}(t)} \mathrm{d} t, \quad n \rightarrow \infty
$$

2. Page 157 : In the last displayed line $\mathrm{E}(\tau)$ should be replaced by $\mathbb{E}(\tau)$.

Remark 1. Theorem 2.1 on p. 143 provides the main formula (2.2) for the hitting probability $h(n, m)$ of the block counting process of the $\beta(2-\alpha, \alpha)$-coalescent with parameter $\alpha \in(0,2)$. We verify below that (2.2) reduces for $\alpha=1$ (Bolthausen-Sznitman coalescent) to the formula (11) in [1].

Proof. Clearly, for $\alpha=1$, (2.2) reduces to

$$
h(n, m)=(m-1) \sum_{k=m-1}^{n-1}\left[z^{k}\right] \int_{0}^{z} \frac{t^{m-1}}{L_{1}(t)} \mathrm{d} t
$$

By (2.3) and (4.11),

$$
\left[z^{k}\right] \int_{0}^{z} \frac{t^{m-1}}{L_{1}(t)} \mathrm{d} t=\frac{1}{k} \sum_{j=1}^{k-m+1}(-1)^{j} \sum_{\substack{n_{1}, \ldots, n_{j} \in \mathbb{N} \\ n_{1}+\cdots+n_{j}=k-m+1}} \frac{1}{\left(n_{1}+1\right) \cdots\left(n_{j}+1\right)}=\frac{a_{k-m+1}}{k}
$$

where a_{0}, a_{1}, \ldots are the coefficients in the Taylor expansion $z / L_{1}(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$. Thus,

$$
h(n, m)=(m-1) \sum_{k=m-1}^{n-1} \frac{a_{k-m+1}}{k}=(m-1) \sum_{j=0}^{n-m} \frac{a_{j}}{j+m-1}
$$

which is Eq. (11) of [1]. Note that in [1] the alternative representation $a_{j}=(-1)^{j} / j!\int_{0}^{1}(x)_{j} \mathrm{~d} x$ for the coefficient a_{j} is used (see [1, Lemma 3.1]).

Remark 2. On p. 155 at the beginning of the proof of Theorem 3.3 it is stated that τ_{∞} almost surely coincides with τ. We verify below the slightly stronger result that $\tau_{\infty}(\omega)=\tau(\omega)$ for all $\omega \in \Omega$.

Proof. Fix $\omega \in \Omega$. Clearly, $\left\{t>0: N_{t}(\omega)=1\right\} \subseteq\left\{t>0: N_{t}^{(n)}(\omega)=1\right\}$ for all $n \in \mathbb{N}$ and, hence, $\tau_{n}(\omega):=\inf \left\{t>0: N_{t}^{(n)}(\omega)=1\right\} \leq \inf \left\{t>0: N_{t}(\omega)=1\right\}=: \tau$ for all $n \in \mathbb{N}$. Taking the limit $n \rightarrow \infty$ it follows that $\tau_{\infty}(\omega) \leq \tau(\omega)$.
Assume now that $\tau_{\infty}(\omega)<\tau(\omega)$. Then there exists $t=t(\omega) \in(0, \infty)$ such that $\tau_{\infty}(\omega)<t<\tau(\omega)$. Since $\tau_{n}(\omega) \leq \tau_{\infty}(\omega)$ it follows that $\tau_{n}(\omega)<t$ and hence $N_{t}^{(n)}(\omega)=1$ for all $n \in \mathbb{N}$. But this implies that $N_{t}(\omega)=1$ and hence $\tau(\omega) \leq t$ in contradiction to $t<\tau(\omega)$. Thus, the assumption is wrong and we have $\tau_{\infty}(\omega)=\tau(\omega)$.

References

[1] Möhle, M. (2014) Asymptotic hitting probabilities for the Bolthausen-Sznitman coalescent. J. Appl. Probab. 51A, 87-97. MR3317352

