Übungen zu "Mathematik für Physiker IV"

1. Sei (X, \mathcal{A}, μ) ein Maßraum, $Y \in \mathcal{A}$ und $\mathcal{B} \subseteq \mathcal{P}(Y)$ die Spuralgebra von \mathcal{A} auf Y (vgl. Aufgabe 3, Blatt 4). Sei $\nu := \mu \mid \mathcal{B}$. Zeigen Sie: ν ist ein Maß auf \mathcal{B} und für jede \mathcal{A} -messbare Funktion $f : \to [0, \infty]$ ist die Einschränkung $f \mid Y : Y \to [0, \infty]$ \mathcal{B} -messbar und es gilt:

 $\int f \mid Y \, d\nu = \int f \chi_Y \, d\mu \quad (=: \int_Y f \, d\mu)$

- 2. Sei λ das Borel-Lebesguesche Maß auf der Borel-Algebra von \mathbf{R} und $\varepsilon > 0$ beliebig (klein). Geben Sie eine offene Menge $U \subseteq \mathbf{R}$ an, die \mathbf{Q} enthält und deren Maß $\lambda(U)$ kleiner als ε ist.
- 3. Die Cantormenge $C \subseteq [0,1]$ entsteht iterativ so: Im ersten Schritt nimmt man aus $C_0 := [0,1]$ das mittlere Drittel heraus, $C_1 := C_0 \setminus (\frac{1}{3},\frac{2}{3})$. Im zweiten Schritt nimmt man aus den verbleibenden zwei Intervallen $[0,\frac{1}{3}]$ und $[\frac{2}{3},1]$ wiederum das jeweils mittlere Drittel heraus, $C_2 := [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$. Bei jedem weiteren Schritt nimmt man aus den verbleibenden Intervallen jeweils wieder das mittlere Drittel heraus und erhält im n-ten Schritt C_n . Schließlich setzt man $C := \bigcap_{n \in \mathbb{N}} C_n$.
 - (a) Man zeige, dass C eine Borelmenge und $\lambda(C) = 0$ ist (Hinweis: Schrumpfungsformel aus Aufgabe 3, Blatt 1).
 - (b) Man zeige, dass C überabzählbar ist. (Hinweis: Man beschreibe alle Zahlen in [0,1] im triadischen System.)

Abgabe: Dienstag, 24. Mai 2005, 10.15 Uhr (!)