Übungen zu "Mathematik für Physiker IV"

1. Sei (X, μ) ein Maßraum, $I \subseteq \mathbf{R}$ ein offenes Intervall und $f: X \times I \to \mathbf{R}$ eine Funktion, so dass für jedes $t \in I$ die Einschränkung $x \mapsto f(x,t)$ integrierbar ist und für jedes $x \in X$ die Einschränkung $t \mapsto f(x,t)$ differenzierbar ist. Es gebe außerdem ein integrierbares $g: X \to [0,\infty]$, so daß $|\frac{\partial f}{\partial t}(x,t)| \leq g(x)$ für alle $t \in I$ und alle $x \in X$ ist. Zeigen Sie, dass dann die Funktion $I \to \mathbf{R}$, $t \mapsto \int f(x,t) \, d\mu$ differenzierbar ist, $X \to \mathbf{R}$, $x \mapsto \frac{\partial f}{\partial t}(x,t)$ für jedes t integrierbar ist und für alle $t \in I$ gilt:

$$\frac{d}{dt} \int f(x,t) \, d\mu = \int \frac{\partial f}{\partial t}(x,t) \, d\mu.$$

(Hinweis: Für $t \in I$ sei (h_n) eine Nullfolge, so dass $t + h_n \in I$ ist für alle $n \in \mathbb{N}$. Benutzen Sie den Mittelwertsatz der Differentialrechnung, um eine Majorante für die Funktionen $g_n: X \to \mathbb{R}, g_n(x) = \frac{1}{h_n}(f(x, t + h_n) - f(x))$ zu finden.)

- 2. Sei $X = \mathbf{N}$, $\alpha = (\alpha_n)$ eine Folge nicht-negativer reeller Zahlen und $\mu_{\alpha} : \mathcal{P}(\mathbf{N}) \to [0, \infty]$ das Maß, welches $\mu_{\alpha}(\{n\}) = \alpha_n$ für alle $n \in \mathbf{N}$ erfüllt.
 - (a) Zeigen Sie, dass jede Funktion $f: \mathbf{N} \to \mathbf{R}, x_n := f(n)$, messbar ist und für eine nicht-negative Folge $f = (x_n)$ gilt:

$$\int f \, d\mu_{\alpha} = \sum_{n=1}^{\infty} \alpha_n x_n.$$

- (b) Zeigen Sie, dass für α mit $\alpha_n = 1/n^3$ und der Folge $f = (x_n)$ mit $x_n = n$ zwar f μ_{α} -integrierbar, nicht aber $f^2 = (x_n^2)$ μ_{α} -integrierbar ist.
- 3. Sei $\mathbf{S}^1 = \{z \in \mathbf{C} : |z| = 1\}$ die Einheitskreislinie und $\pi: \mathbf{R} \to \mathbf{S}^1$, $\pi(t) = e^{it}$. Sei weiter $\mathcal{B} \subseteq \mathcal{P}(S^1)$ die Borel-Algebra auf S^1 und $\mu: \mathcal{B} \to [0, \infty]$ gegeben durch $\mu(B) = \frac{1}{2\pi}\lambda(\pi^{-1}(B)\cap[0, 2\pi])$, wo λ das Borel-Lebesguesche Maß auf der Borel-Algebra von \mathbf{R} sei. Zeigen Sie: Ist $f: \mathbf{S}^1 \to [0, \infty]$ messbar, so ist $f \circ \pi$ 2π -periodisch und messbar und es gilt:

$$\int f \, d\mu = \frac{1}{2\pi} \int_{[0,2\pi]} f \circ \pi \, d\lambda.$$

Abgabe: Dienstag, 31. Mai 2005, 10.15 Uhr (!)