Übungen zu "Mathematik für Physiker IV"

1. Sei λ das Borel-Lebesguesche Maß auf der Borelalgebra $\mathcal{B} \subseteq \mathcal{P}(\mathbf{R})$ und μ das Zählmaß auf der vollen Potenzalgebra \mathcal{P} von \mathbf{R} . Zeigen Sie, dass die Diagonale $\Delta = \{(x,y) : x = y\}$ in $\mathcal{B} \otimes \mathcal{P} \subseteq \mathcal{P}(\mathbf{R}^2)$ liegt, und es gilt:

$$\int \lambda(\Delta_y) \, d\mu \neq \int \mu(\Delta_x) \, d\lambda.$$

- 2. (a) Sei $K\subseteq \mathbf{R}^3$ ein Kreiskegel mit einer Grundscheibe vom Radius r>0 und einer Höhe h>0. Berechnen Sie mit Cavalieris Prinzip das Volumen von K.
 - (b) Sei $f:[a,b] \to (0,\infty)$, $x \mapsto f(x)$ eine stetige Funktion und $K \subseteq \mathbf{R}^3$ der Rotationskörper, der entsteht, wenn man den Graphen von f um die x-Achse rotiert. Zeigen Sie, dass für das Borel-Lebesgue-Maß λ von K gilt:

$$\lambda(K) = \pi \int_a^b f^2(x) \, dx$$

3. Sei (X, μ) ein σ -endlicher Maßraum und $f: X \to [0, \infty]$ eine messbare Funktion. Sei λ das Borel-Lebesgue-Maß auf $[0, \infty]$ und $\mu \otimes \lambda$ das Produktmaß auf $X \times [0, \infty]$. Zeigen Sie, dass der Subgraph von f, d.i.

$$G_f = \{(x,t) \mid 0 \le t < f(x)\} \subseteq X \times [0,\infty],$$

eine messbare Menge ist und es gilt: $\int f d\mu = (\mu \otimes \lambda)(G_f)$. (Hinweis: Zeigen Sie die Behauptung zunächst für Treppenfunktionen und benutzen Sie dann Levis Satz bzw. die Ausschöpfungsformel für Maße.)

Abgabe: Dienstag, 14. Juni 2005, 10.15 Uhr