Übungen zu "Mathematik für Physiker II"

1. Zeigen Sie, dass die folgenden Matrizen $A, B \in \operatorname{Mat}_n(\mathbf{C})$ (n = 2, 3) invertierbar sind und bestimmen Sie A^{-1} und B^{-1} .

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} e & \pi \\ i & 1 \end{pmatrix}$$

2. Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch

$$f(x_1, x_2) = (x_1 + x_2, x_1 - x_2).$$

Sei weiter $\mathcal{K} = (e_1, e_2)$ die kanonische Basis von \mathbb{R}^2 und $\mathcal{A} = (v_1, v_2)$ mit $v_1 = e_1 + e_2$ und $v_2 = e_1$. Bestimmen Sie die Basiswechselmatrizen S von \mathcal{K} auf \mathcal{A} und T von \mathcal{A} auf \mathcal{K} sowie die Matrizen $A = M(f; \mathcal{K}, \mathcal{K})$ und $B = M(f; \mathcal{A}, \mathcal{A})$ und überprüfen Sie die Formel B = SAT.

- 3. Zeigen Sie: Sind $A, B \in \operatorname{Mat}_n(K)$ mit AB = E, so ist auch BA = E. (Hinweis: Überlegen Sie zunächst, warum aus AB = E schon folgt, dass A invertierbar ist.)
- 4. Seien V und W endlich dimensionale Vektorräume, \mathcal{A} eine Basis von V, \mathcal{B} eine Basis von W sowie \mathcal{A}^* die zu \mathcal{A} duale Basis von V^* und \mathcal{B}^* die zu \mathcal{B} duale Basis von W^* (vgl. Aufgabe 4, Blatt 4). Sei weiter $f: V \to W$ linear.
 - (a) Wir setzen $f^*: W^* \to V^*$, $f^*(\mu) := \mu \circ f$ und nennen dies die zu f duale Abbildung. Zeigen Sie, dass f^* linear ist.
 - (b) Sei $A = M(f; \mathcal{A}, \mathcal{B}) \in \text{Mat}(m, n)$ und $B = M(f^*; \mathcal{B}^*, \mathcal{A}^*) \in \text{Mat}(n, m)$. Zeigen Sie: $B = A^t$.

Abgabe: Mittwoch, 13. Juni 2007, 10.15 Uhr