Mathematik II für Naturwissenschaftler

Übungsblatt 9 (Abgabe am 2.7.2009)

Aufgabe 36 (10 Punkte)

Sei $\vec{f}: \mathbb{R}^3 \setminus \{\vec{0}\} \to \mathbb{R}^3$ definiert durch $\vec{x} \mapsto \frac{\vec{x}}{|\vec{x}|^{\alpha}}, \alpha \in \mathbb{R}$, und sei K die Kugel mit Radius R.

- a) Bestimmen Sie $\int_{\partial K} \vec{f} \vec{n}_i dO$ (ohne Verwendung eines Integralsatzes).
- b) Berechnen Sie div \vec{f} .
- c) Bestimmen Sie $\int_K \operatorname{div} \vec{f} \, dV$ für $\alpha > 3$.
- d) Bilden Sie den Limes $\alpha \to 3$ Ihres Ergebnisses aus c und vergleichen Sie mit den Ergebnissen aus a & b für $\alpha = 3$. Erklären Sie den scheinbaren Widerspruch.

Aufgabe 37 (10 Punkte)

Berechnen Sie die Oberfläche des Sattels

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x^2 + y^2 \le 2, \ z = x^2 - y^2 \right\}$$

sowie den Fluss von $\vec{v}(\vec{x}) = \vec{x}$ durch S.

HINWEIS: Ebene Polarkoordinaten, $dx dy = r dr d\varphi$, sind hilfreich.

Aufgabe 38 (10 Punkte)

Berechnen Sie $\oint_{\mathfrak{K}} \vec{v} \, d\vec{x}$ für

$$\vec{v}(x, y, z) = \begin{pmatrix} y + e^{-x^2} \\ \sin y - x \\ \cosh z \end{pmatrix}$$
;

dabei sei \mathfrak{K} der im Uhrzeigersinn durchlaufene Einheitskreis in der xy-Ebene.

Aufgabe 39 (10 Punkte)

Sei $\Omega = \{1, 2, 3, 4, 5\}$. Ergänzen Sie die folgenden Mengen von Teilmengen von Ω jeweils zur kleinstmöglichen Algebra \mathcal{A} über Ω .

- a) $\{\{1\}, \{2, 3, 4, 5\}\}$
- b) $\{\emptyset, \{1, 5\}\}$
- c) $\{A \in \mathcal{P}(\Omega) \text{ mit } |A| = 3\}$
- d) $\{A \in \mathcal{P}(\Omega) \text{ mit } |A| = 5\}$