SS 2010 14.06.2010 Blatt 9

Übungen zu "Algebraische Topologie II"

1. Sei $C_1 = \underline{\mathbf{CW}}$ die Kategorie der CW-Komplexe, $C_2 = \underline{\mathbf{Ab}}$ die Kategorie der abelschen Gruppen und $k \in \mathbb{N}_0$. Wir betrachten die Funktoren $F_1, F_2 : C_1 \to C_2$, gegeben auf den Objekten durch

$$F_1(X) = H_k(X)$$
 (singuläre Homologie), $F_2(X) = H_k(C(X))$ (zelluläre Homologie).

Zeigen Sie, dass der Isomorphismus $\Phi_k(X) \colon H_k(X) \to H_k(C(X))$ aus der Vorlesung $\Phi_k \colon X \mapsto \Phi_k(X)$ zu einer natürlichen Transformation von F_1 nach F_2 macht.

- 2. (a) Sei $(X, (X^k))$ ein CW-Raum und $K \subseteq X$ kompakt. Zeigen Sie, dass es ein $n \in \mathbb{N}$ gibt mit $K \subseteq X^n$. (Hinweis: Wählen Sie für jede Zelle e mit $e \cap K \neq \emptyset$ einen Punkt $p \in e \cap K$ und zeigen Sie, dass die Menge dieser Punkte diskret ist.)
 - (b) Zeigen Sie: Ist X ein kompakter CW-Raum, so sind nur endliche viele seiner Homologiegruppen nicht trivial und diese sind endlich erzeugt.
- 3. Sei $n \in \mathbb{N}$ und $d \in \mathbb{Z}$ beliebig. Zeigen Sie, dass es eine stetige Abbildung $f : S^n \to S^n$ vom Grad d gibt. (Hinweis: vollständige Induktion.)
- 4. (a) Sei $n \in \mathbb{N}$, J eine beliebige Indexmenge, $Y = \bigvee_{j \in J} S^n$, $\alpha \in H_n(Y)$ und $[S^n] \in H_n(S^n)$ eine Orientierung von S^n . Zeigen Sie, dass es eine stetige Abbildung $f : S^n \to Y$ gibt mit $f_*([S^n]) = \alpha$. (Hinweis: Ist $\alpha = \sum_{i=1}^r d_i(\iota_i)_*([S^n])$ (wo $\iota_i = \iota_{j_i} : S^n \to Y$ die Inklusion auf den j_i Faktor ist), so betrachte $f := (f_1 \vee \cdots \vee f_r) \circ h : S^n \to Y$, wo $h : S^n \to Y$ stetig ist mit

$$h_*([S^n]) = (\iota_1) * ([S^n]) + \dots + (\iota_r)_*([S^n])$$

und $f_i: S^n \to S^n$ Grad d_i hat (i = 1, ..., r, vlg. Aufgabe 3).)

(b) Sei nun G eine beliebige abelsche Gruppe und $n \in \mathbb{N}$. Zeigen Sie, dass es einen wegzusammenhängenden topologischen Raum X gibt mit $H_k(X) = 0$ für $k \neq n$ und $H_n(X) \cong G$. (Hinweis: Wählen Sie Erzeuger $(\beta_j)_{j \in J}$ und Relationen $(\alpha_i)_{i \in I}$ von G, betrachten Sie $Y := \bigvee_{j \in J} S^n$ und kleben Sie für jedes $i \in I$ eine (n+1)-Zelle e_i^{n+1} via einer Klebeabbildung $f_i \colon S^n \to Y$ mit $(f_i)_*([S^n]) = \alpha_i$ an Y an. Setze dann $X := Y \cup \bigcup_{i \in I} e_i^{n+1}$.)

Abgabe: Montag, 21. Juni 2010, 9 Uhr