MATHEMATIK FÜR PHYSIKER IV ÜBUNGSBLATT 9

Aufgabe 26: Zeigen Sie, dass auf der topologischen Mannigfaltigkeit $M=\mathbb{R}$ die folgenden beiden Abbildungen zwei Karten definieren:

$$\varphi_1: M \to \mathbb{R}, \quad x \mapsto x, \qquad \varphi_2: M \to \mathbb{R}, \quad x \mapsto x^3.$$

Diese Karten definieren wiederum auf M zwei differenzierbare Atlanten, A_1 und A_2 . Zeigen Sie ferner:

- a) Die identische Abbildung Id: $(M, A_1) \to (M, A_2)$ ist kein Diffeomorphismus zwischen den beiden differenzierbaren Mannigfaltigkeiten. Insbesonder definieren die beiden Atlanten verschiedene (d.h. nicht kompatible) differenzierbare Strukturen auf M.
- b) Die Abbildung $g:(M,\mathcal{A}_1)\to (M,\mathcal{A}_2), x\mapsto \sqrt[3]{x}$ ist ein differenzierbarer Diffeomorphismus.
- c) Zeigen Sie, dass es keinen Diffeomorphismus zwischen der Mannigfaltigkeit S^k und einer offenen Menge $U \subset \mathbb{R}^k$ geben kann.

Aufgabe 27:

- a) Es sei $f: U_{\mathbb{R}^n} \to U_{\mathbb{R}^m}$ eine Submersion. Zeigen Sie, dass dann f eine offene Abbildung ist, d.h., das Bild jeder offenen Teilmenge wieder offen ist.
- b) Beweisen Sie oder widerlegen Sie: Es seien M, N, P differenzierbare Mannigfaltigkeiten und $\pi:M\to N$ eine surjektive Submersion. Es sei weiter $F:N\to P$ irgendeine Abbildung. Dann ist $F(C^k)$ differenzierbar genau dann wenn $F \circ \pi(C^k)$ differenzierbar ist.

Aufgabe 28:

- a) Es sei $\pi: S^k \to \mathbb{RP}^k$ die Abbildung $x \mapsto [x]$. Zeigen Sie, dass π ein lokaler Diffeomorphismus zwischen den Mannigfaltigkeiten S^k und \mathbb{RP}^k ist.
- b) Zeigen Sie, dass die Abbildung $S^2 \to \mathbb{R}^4$, $(x,y,z) \mapsto (x^2-y^2,xy,xz,yz)$ eine injektive Immersion $f: \mathbb{RP}^2 \to \mathbb{R}^4$ induziert, die auch noch einen Homöomorphismus $\mathbb{RP}^2 \to f(\mathbb{RP}^2)$ definiert. (Eine solche Abbildung nennt man eine reguläre Einbettung).

Abgabe: Montag, 21.06.2010, zu Beginn der Vorlesung.

[8]

[8]