Mathematik II für Naturwissenschaftler

Übungsblatt 3 (Abgabe am 05.05.2011)

Aufgabe 11 (10 Punkte)

y'(x) = -y(x) - 1, y(0) = -2. Wie betrachten das AWP

- a) Lösen Sie das AWP.
- b) Bestimmen Sie alle Picard-Iterierten $y_n(x)$, $n \in \mathbb{N}_0$, für das AWP.
- c) Berechnen Sie $\lim_{n\to\infty} y_n(x)$ und vergleichen Sie mit Teil a.

Aufgabe 12 (10 Punkte)

Bestimmen Sie für die folgenden Matrizen alle Eigenwerte mit zugehörigen Eigenvektoren.

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

(10 Punkte) Aufgabe 13

- a) Führen Sie die HAT für Matrix B aus Aufgabe 12 durch, d.h. geben Sie eine unitäre (bzw. orthogonale) Matrix U mit zugehöriger Diagonalmatrix $D = \overline{U}^T B U$ an.
- b) Berechnen Sie e^{Cx} für $x \in \mathbb{R}$ und C aus Aufgabe 12. HINWEIS: Bringen Sie die Matix C mit Hilfe einer HAT in Diagonalform.

(10 Punkte) Aufgabe 14

a) Bestimmen Sie die Eigenwerte der Matrix

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}, \qquad \phi \in \mathbb{R}.$$

b) Zeigen Sie: Ist $U \in \mathbb{C}^{n \times n}$ unitär und gilt $U\vec{x} = \lambda \vec{x}$ für ein $\vec{x} \in \mathbb{C}^n$, $\vec{x} \neq \vec{0}$, so folgt: $|\lambda|=1.$

Aufgabe 15 (10 Zusatzpunkte)

Sei $A \in \mathbb{C}^{n \times n}$ hermitesch und habe die verschiedenen Eigenwerte $\lambda_1, ..., \lambda_r$ $(r \leq n)$ mit Vielfachheiten $n_1, ..., n_r$ ($\sum_{j=1}^r n_j = n$). Weiter seien $\vec{u}_k^j, k = 1, ..., n_j$ orthonormale Eigenvektoren zu λ_i . Wir definieren

$$P_j := \sum_{m=1}^{n_j} \vec{u}_m^j \, \overline{\vec{u}_m^j}^T.$$

Zeigen Sie:

- a) $P_j P_l = \delta_{jl} P_l$ d.h. insbesondere $P_j^2 = P_j$

- b) $\overline{P_j}^T = P_j$ c) $\sum_{j=1}^r P_j = I$ d) $\sum_{j=1}^r \lambda_j P_j = A$

HINWEIS zu c) und d): Jedes $\vec{x} \in \mathbb{C}^n$ lässt sich als $\vec{x} = \sum_{j=1}^r \sum_{m=1}^{n_j} a_{jm} \vec{u}_m^j$ darstellen mit geeigneten $a_{jm} \in \mathbb{C}$ (Warum?).