Prof. Dr. Frank Loose, Pirmin Vollert SS 2013 07.05.2013 Blatt 7

Übungen zu

"Mathematik für Physiker 4" und "Ergänzungen zu Mathematik für Physiker 4"

1. Zeigen Sie, dass

$$O_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) : A^t A = E_n \}$$

eine kompakte $\frac{1}{2}n(n-1)$ -dimensionale Untermannigfaltigkeit von $\mathrm{Mat}_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ ist wie folgt:

a) (2 Punkte) Betrachten Sie

$$F: \operatorname{Mat}_n(\mathbb{R}) \to \operatorname{Sym}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) : A^t = A \} : A \mapsto A^t A - E_n$$

und zeigen Sie, dass für das Differential $DF(A): \mathrm{Mat}_n(\mathbb{R}) \to \mathrm{Sym}_n(\mathbb{R})$

$$DF(A)(B) = A^tB + B^tA$$

gilt.

- b) Zeigen Sie für $A \in O_n(\mathbb{R}) = F^{-1}(0)$, dass DF(A) surjektiv ist und schließen Sie daraus die Behauptung.
- 2. (4 Punkte) Sei $\omega_n > 0$ für jedes $n \in \mathbb{N}$ das Volumen der n-dimensionalen Einheitskugel \mathbb{B}^n , $\omega_n = \lambda(\mathbb{B}^n)$. Zeigen Sie für den Oberflächeninhalt τ_{n-1} von $\mathbb{S}^{n-1} \subseteq \mathbb{R}^n$, $\tau_{n-1} = \mathcal{H}^{n-1}(\mathbb{S}^{n-1})$:

$$\tau_{n-1} = n\omega_n.$$

(Hinweis: Benutzen Sie den Satz von Gauß mit dem Vektorfeld $X = \mathrm{id}_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$.)

3. (4 Punkte) Sei $K \subseteq \mathbb{R}^n$ ein Kompaktum mit glattem Rand $M, \nu : M \to \mathbb{R}^n$ ihr äußeres Einheitsnormalenfeld und $f : K \to \mathbb{R}$ stetig differenzierbar. Wir bezeichnen mit $D_{\nu}f : M \to \mathbb{R}$ ihre Normalenableitung entlang M, d.h.:

$$D_{\nu}f(x) := \langle \operatorname{grad}(f)(x), \nu(x) \rangle.$$

Beweisen Sie nun folgende Integralformel von Green: Sind $f, g: K \to \mathbb{R}$ zweimal stetig differenzierbar, so gilt

$$\int_{V} (f \cdot \Delta g - g \cdot \Delta f) \ dV = \int_{\partial V} (f \cdot D_{\nu} g - g \cdot D_{\nu} f) \ dS.$$

(Hinweis: Divergenzsatz mit dem Vektorfeld $X = f \cdot \operatorname{grad}(g) - g \cdot \operatorname{grad}(f)$)

Aufgabe 4 ist für die Ergänzungsvorlesung zu bearbeiten.

4. Die Populationen eines Räuber-Beute-Modells werden mit $x \in \mathbb{R}_+$ für die Beute (z.B. Mäusen) und $y \in \mathbb{R}_+$ für die Räuber (z.B. Katzen) bezeichnet. Das einfachste Modell für die Entwicklung von (x,y) wird durch die Räuber-Beute-Gleichung von Volterra und Lotka gegeben,

$$\dot{x} = (a - by)x$$
$$\dot{y} = (cx - d)y$$

mit a, b, c, d > 0. Hierbei wird von einem unbeschränktem Wachstum (mit Rate a > 0) der Beute in Abwesenheit der Räuber ausgegangen (also $\dot{x} = ax$), welche durch das Aufeinandertreffen von Räuber und Beute proportional zur Anzahl von Räubern und Beute (mit Rate b > 0) dezimiert wird, also $\dot{x} = ax - bxy$. (Ähnlich für die Population y des Räubers.)

- a) (2 Punkte) Man bestimme die Gleichgewichtslage $p=(x_0,y_0)$ des Systems und zerlege $\mathbb{R}_+ \times \mathbb{R}_+$ durch die Geraden $\{x=x_0\}$ und $\{y=y_0\}$ in vier Quadranten. Dann mache man sich klar, dass sich die Bahnen $t \to (x(t),y(t))$ um die Gleichgewichtslage herumwinden.
- b) (2 Punkte) Zeigen Sie, dass die Funktion $H(x,y) = cx d \ln x + by a \ln y$ ein 1. Integral ist und daher alle Bahnen (außer der Gleichgewichtslage) periodisch sind.

Abgabe: Freitag, 14.06.2013, 11 Uhr in der Vorlesung