Prof. Dr. Frank Loose, Pirmin Vollert SS 2013 28.06.2013 Blatt 10

Übungen zu

"Mathematik für Physiker 4" und "Ergänzungen zu Mathematik für Physiker 4"

- 1. Seien G_1 und G_2 die Definitionsgebiete der Hauptzweige des Logarithmus log bzw. des Arcustangens Arctan.
 - a) (2 Punkte) Zeigen Sie, dass die Abbildung $\mathbb{C} \setminus \{-i\} \to \mathbb{C} : z \mapsto \frac{1+iz}{1-iz}$ das Gebiet G_2 diffeomorph auf G_1 abbildet. (Hinweis: Bestimmen sie die Umkehrfunktion)
 - b) (2 Punkte) Zeigen Sie, dass für alle $z \in G_2$

$$Arctan(z) = \frac{1}{2i} \log(\frac{1+iz}{1-iz})$$

gilt. (Hinweis: Beide Seiten ableiten.)

- 2. Sei $a \in \mathbb{C}$ beliebig, $G \subseteq \mathbb{C}^*$ ein Gebiet und $\log : G \to \mathbb{C}$ ein Zweig des Logarithmus. Man definiert den zugehörigen Zweig der a-ten Potenz durch $\operatorname{pot}_a : G \to \mathbb{C} : z \mapsto \exp(a \log(z)) =: z^a$.
 - a) (2 Punkte) Berechnen Sie alle möglichen Werte von $i^i, 2^{-i}$ und $(-1)^{\sqrt{i}}$.
 - b) (2 Punkte) Zeigen Sie: Ist $a = \frac{1}{n}$ $(n \in \mathbb{N})$, $G \subseteq \mathbb{C}^*$ ein Gebiet, $\log : G \to \mathbb{C}$ ein Zweig des Logarithmus und $f : G \to \mathbb{C}$ eine holomorphe Funktion mit $f(z)^n = z$ für alle $z \in G$ (ein Zweig der n-ten Wurzel), so existiert eine n-te Einheitswurzel ω , so dass $f(z) = \omega \exp(\frac{1}{n}\log(z))$ für jedes $z \in G$ ist.
- 3. a) (2 Punkte) Zeigen Sie, dass für alle $z \in \mathbb{C}$ (nicht nur in \mathbb{R}) gilt:

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i}(e^{iz} - e^{-iz}).$$

- b) (2 Punkte) Bestimmen Sie mit Hilfe von a) alle (komplexen) Nullstellen von cos und sin
- c) (2 Punkte) Zeigen Sie: $\cos^2 z + \sin^2 z = 1$ für alle $z \in \mathbb{C}$.

(Hinweis: Funktionalgleichung der Exponentialfunktion darf benutzt werden.)

Aufgabe 4 ist für die Ergänzungsvorlesung zu bearbeiten.

4. Ein reelles trigonometrische Polynom ist eine Funktion $f : \mathbb{R} \to \mathbb{R}$, die sich mit Konstanten $n \in \mathbb{N}_0, a_0, \dots a_n \in \mathbb{R}$ und $b_1, \dots, b_n \in \mathbb{R}$ als

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cdot \cos(kx) + b_k \cdot \sin(kx)$$

schreiben lässt.

a) (2 Punkte) Zeigen Sie, dass sich die Koeffizienten $a_0, \ldots, a_n, b_1, \ldots, b_n$ aus f wie folgt rekonstruieren lassen:

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx,$$

 $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx$

b) (2 Punkte) Man setze nun $c_0 := \frac{a_0}{2}$, $c_k := \frac{1}{2}(a_k - ib_k)$, $c_{-k} := \frac{1}{2}(a_k + ib_k)$ für $k = 1, \ldots, n$ und zeige:

$$f(x) = \sum_{k=-n}^{n} c_k e^{ikx}.$$

Abgabe: Freitag, 05.07.2013, 11 Uhr in der Vorlesung