Mathematik für Physiker II

Übungsblatt 1

Aufgabe 1: $(\{a, b, c, d\}, \{e, f, g, h\} \text{ je ein } \times)$

Leiten Sie die folgenden Funktionen mit Hilfe von Produkt-, Quotienten- und Kettenregel ab.

- a) $f_1(x) := a^x \text{ für } a > 0$,
- e) $f_5 := h \cdot f \cdot g$,
- b) $f_2(x) := x^a \text{ für } x > 0,$

f) $f_6 := h \circ f \circ g$,

c) $f_3(x) := x^x \text{ für } x > 0$,

g) $f_7 := h \circ (1/g),$

d) $f_4(x) := \frac{\sin(x) e^{1/\sqrt{1+x^2}}}{2+\sin(x)}$, h) $f_8 := \ln(h)$, wobei $f, g, h : \mathbb{R} \to \mathbb{R}$ beliebige differenzierbare Funktionen sind und $a \in \mathbb{R}$.

Aufgabe 2: (\times)

Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = x^n$. Zeige (z.B. mit vollstaendiger Induktion), dass f'(x) = nx^{n-1} gilt.

Aufgabe 3: $(*,\times)$

Sei $g:[-1,1]\to\mathbb{R}$ eine beschraenkte Funktion und $f(x)=x^2g(x)$. Zeige, dass f'(0) existiert und gleich 0 ist.

Aufgabe 4: (*,{a},{b} je ein ×)

Sei $I \subset \mathbb{R}$ und $f: I \to \mathbb{R}$ in dem inneren Punkt $\xi \in I$ differenzierbar.

- a) Zeige, dass der Grenzwert $\lim_{h\to 0} \frac{f(\xi+h)-f(\xi-h)}{2h}$ existiert und gleich $f'(\xi)$ ist.
- b) Zeige an einem Beispiel, dass aus der Existenz dieses Grenzwertes jedoch nicht die Differenzierbarkeit von f in ξ folgt.