Mathematik für Physiker II

Übungsblatt 10

Aufgabe 1: $(*, \times)$

Sei $A \in M(n, \mathbb{R})$ symmetrisch und (x, y) das euklidische Skalarprodukt im \mathbb{R}^n . Zeige: Alle Eigenwerte von A sind positiv (d.h. grösser 0). $\Leftrightarrow (x, Ax) > 0 \ \forall x \in \mathbb{R}^n$.

Aufgabe 2: $(*, \times)$

Sei $I = [a, b] \subset \mathbb{R}$ ein abgeschlossenes Intervall und $f, g : I \to \mathbb{R}$ mit $f, g \in \mathcal{R}(I)$. Zeige die folgenden Aussagen:

- a) $f(x) \ge g(x) \ \forall x \in I \Rightarrow \int_I f(x) dx \ge \int_I g(x) dx$.
- b) $|f| \in \mathcal{R}(I)$ und $\int_I f(x) dx \le \int_I |f(x)| dx$.
- c) $f^2, g^2, f \cdot g \in \mathcal{R}(I)$ und $\int_I f(x)g(x) dx \leq \sqrt{\int_I f(x)^2 dx} \sqrt{\int_I g(x)^2 dx}$.

Aufgabe 3: $(*, \times)$

Sei F ein diagonalisierbarer Endomorphismus eines endlichdimensionalen \mathbb{R} -Vektorraums, für den gilt: Sind v und w Eigenvektoren von F, so ist v+w ein Eigenvektor von F oder v+w=0. Zeige, dass es ein $\lambda \in \mathbb{R}$ gibt mit $F=\lambda \cdot id$ (id bezeichnet die Identität).

Aufgabe 4:
$$(\times)$$

Berechne die folgenden beiden unbestimmten Integrale:

- a) $\int x^3 e^x dx$,
- b) $\int x \ln(x) dx$.

Aufgabe 5:
$$(\times)$$

Sei $I = [a, b] \subset \mathbb{R}$ ein abgeschlossenes Intervall und $f, g, h, F : I \to \mathbb{R}$, wobei g, h differenzierbar sind und f stetig ist. Weiterhin sei F gegeben durch $F(x) = \int_0^{h(x)} g(x) f(t) dt$. Berechne die Ableitung von F.

Aufgabe 6:
$$(\times)$$

Berechne die folgenden mehrdimensionalen Integrale:

a) $\int_{I} e^{x+y} d(x, y)$ wobei $I = [1, 2] \times [1, 2]$,

b) $\int_{I} \frac{2z}{(x+y)^2} d(x,y,z)$ mit $I = [1,2] \times [2,3] \times [0,2]$.

Aufgabe 7:
$$(\times)$$

Sei $A \subset \mathbb{R}^n$ eine konvexe Menge und $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig differenzierbar. Zeige, dass $||f(x) - f(y)|| \le \sup_{x \in A} ||Df(x)|| ||x - y||$ für alle $x, y \in A$ gilt. Dabei ist $||Df(x)|| = \sup_{v \in \mathbb{R}^m, ||v|| = 1} ||Df(x)v||$ die Norm der linearen Abbildung Df.