Mathematische Physik: Klassische Mechanik Übungsblatt 12

Aufgabe 45: Symmetrien und Erhaltungsgrößen

Wir verwenden die Notation und Begriffsbildung aus Aufgabe 43 und Aufgabe 44. Sei $M = \mathbb{R}^n$ der Konfigurationsraum und $P = T^*M$ der Phasenraum mit der kanonischen symplektischen Form $\omega_0 = \sum_{i=1}^n \mathrm{d}q^i \wedge \mathrm{d}p^i$.

Auf M operieren die Gruppe der Translationen in Richtung $a \in \mathbb{R}^n$ durch $\phi_t^a(q) = q + ta$ und die Gruppe der Rotationen um die Achse $b \in \mathbb{R}^n$ durch $\phi_t^b(q) = e^{\sigma(b)t}q$, wobei $\sigma(b)^T = -\sigma(b)$ eine schiefsymmetrische reelle Matrix ist.

Bestimmen Sie die Erhaltungsgrößen $A, B \in C^{\infty}(P)$ auf P, die gemäß den Aufgaben 43 und 44 zu den Symmetrien ϕ_t^a und ϕ_t^b des Konfigurationsraums gehören.

Aufgabe 46: Liouville-Torus als Lagrangesche Untermannigfaltigkeit

Sei (M, ω) eine symplektische Mannigfaltigkeit mit dimM = 2n. Die Menge $\{F_1, ..., F_n\} \subset C^{\infty}(M)$ sei integrabel und $f \in \mathbb{R}^n$ sei regulärer Wert der Funktion $F := (F_1, ..., F_n) : M \to \mathbb{R}^n$, also

$$dF_1(x) \wedge ... \wedge dF_n(x) \neq 0$$
 für alle $x \in M_f := \{x \in M | F(x) = f\}.$

Zeigen Sie, dass M_f eine Lagrangesche Untermannigfaltigkeit von M ist.

Aufgabe 47: Vorbereitung zu Aufgabe 48

Sei M eine Mannigfaltigkeit, im Folgenden der Konfigurationsraum genannt, und $P = T^*M$ der zugehörige Phasenraum mit der kanonischen symplektischen Form $\omega_0 = -d\Theta_0$.

- (a) Seien $X, Y \in \mathcal{T}_0^1(P)$ vertikale Vektorfelder, d.h. $T\pi \circ X = T\pi \circ Y = 0$, wobei $\pi : P = T^*M \to M$ die Projektion im Kotangentialbündel auf die Basis ist. Zeigen Sie, dass dann $\omega_0(X,Y) = 0$ gilt.
- (b) Sei $\nu \in \mathcal{T}_1^0(M)$. Zeigen Sie, dass $\nu^*\Theta_0 = \nu$, wobei Sie ν als Abbildung $\nu : M \to T^*M$ auffassen.

Aufgabe 48: Zeitunabhängige Hamilton-Jacobi Gleichung

Seien M, $P = T^*M$ und $\omega_0 = -d\Theta_0$ wie in Aufgabe 47. Sei weiterhin $H \in C^{\infty}(P)$, X_H das zugehörige Hamiltonsche Vektorfeld und $S \in C^{\infty}(M)$.

Sei nun $c : \mathbb{R} \to M$ eine Kurve im Konfigurationsraum, dann wird durch $c_S := dS \circ c$ eine Kurve im Phasenraum definiert.

(a) Zeigen Sie: Falls c die Differentialgleichung

$$\dot{c} = T\pi \circ X_H \circ \mathrm{d}S \circ c$$

auf dem Konfigurationsraum löst, dann löst c_S die Gleichung

$$\dot{c}_S = T(\mathrm{d}S \circ \pi) \circ X_H \circ c_S$$

auf dem Phasenraum.

(b) Zeigen Sie: Falls $H \circ dS = E = \text{const.}$, dann ist

$$T(\mathrm{d}S\circ\pi)\circ X_H=X_H$$

und somit

$$\dot{c}_S = X_H \circ c_S$$

eine Integralkurve an das Hamiltonsche Vektorfeld X_H .

Tipp: Zeigen Sie mit Hilfe von A. 47, dass $\omega_0(T(dS \circ \pi) \circ X, Y) = \omega_0(X, Y - T(dS \circ \pi) \circ Y)$.

(c) Schreiben Sie die Hamilton-Jacobi Gleichung $H \circ dS = E$ in einer kanonischen Karte.

Aufgabe 49: Lineare Bewegung auf dem 2-Torus *

Sei $\mathbb{T}^2:=S^1\times S^1$ der 2-Torus und $\varphi:\mathbb{R}\to\mathbb{T}^2,\,t\mapsto(\varphi_1(t),\varphi_2(t)).$ Es gelte

$$\dot{\varphi}_1 = \omega_1 \quad \text{und} \quad \dot{\varphi}_2 = \omega_2.$$

für $\omega_1, \omega_2 \in \mathbb{R}$. Zeigen Sie die folgenden Implikationen:

(a)
$$\frac{\omega_1}{\omega_2} \in \mathbb{Q} \iff \varphi(t) \text{ ist periodisch},$$
 (b) $\frac{\omega_1}{\omega_2} \notin \mathbb{Q} \iff \{\varphi(t) | t \in \mathbb{R}\} \text{ liegt dicht in } \mathbb{T}^2.$

Abgabe: Mittwoch, 17.07.2013, bis 17.00 Uhr im Postfach von Herrn Teufel.