Mathematische Physik: Klassische Mechanik Übungsblatt 2

Aufgabe 4: Tangentialraum und Tangentialabbildung

(a) Zeigen Sie, dass der in der Vorlesung eingeführte Tangentialraum T_xM an eine Mannigfaltigkeit M im Punkt x ein n-dimensionaler reeller Vektorraum ist.

Anleitung: Zeigen Sie zunächst, dass für jede Karte (V, φ) mit $x \in V$ die Abbildung

$$T\varphi: T_xM \to \mathbb{R}^n$$
, $[c]_x \mapsto \frac{\mathrm{d}}{\mathrm{d}t}(\varphi \circ c)(t)\Big|_{t=0}$

bijektiv ist. Zeigen Sie dann, dass die durch $T\varphi$ auf T_xM induzierte Vektorraumstruktur unabhängig von φ ist.

(b) Zeigen Sie, dass die in der Vorlesung eingeführte Tangentialabbildung wohldefiniert ist.

Aufgabe 5: Tangentialbündel

Sei M eine n-dimensionale differenzierbare Mannigfaltigkeit und TM das zugehörige Tangentenbündel.

- (a) Zeigen Sie, dass M eine Untermannigfaltigkeit von TM ist.
- (b) Zeigen Sie: TM ist genau dann trivialisierbar, wenn es n punktweise linear unabhängige Vektorfelder auf M gibt.

Aufgabe 6: Die orthogonalen Matrizen als Mannigfaltigkeit

Zeigen Sie, dass die orthogonalen Matrizen $\mathbb{O}(n) := \{Q \in GL(n) \mid Q^TQ = \mathrm{Id}\}$ eine Untermannigfaltigkeit der Dimension $\frac{n(n-1)}{2}$ von GL(n) bilden. Weiterhin gilt

$$T_Q \mathbb{O}(n) = \{ B \mid (Q^{-1}B)^T = -Q^{-1}B \},$$

also insbesondere

$$T_{\mathrm{Id}}\mathbb{O}(n) = \{B \mid B^T = -B\} =: \mathrm{Schief}(n).$$

Tipp: Finden Sie eine Submersion $F: \mathrm{GL}(n) \to \mathrm{Sym}(n)$ in die symmetrischen Matrizen Sym(n) mit $F^{-1}(0) = \mathbb{O}(n)$. Verwenden Sie dann Definition 1.8 und Bemerkung 1.24 aus der Vorlesung.

Aufgabe 7: Lokaler Umkehrsatz *

Seien M und N differenzierbare Mannigfaltigkeiten der Dimension n. Für ein $p \in M$ sei $f: M \to N$ eine glatte Abbildung, so dass $Tf|_p: T_pM \to T_{f(p)}N$ ein Isomorphismus ist. Zeige unter Verwendung des Umkehrsatzes im \mathbb{R}^n , dass es eine offene Umgebung $U \subset M$ von p gibt, so dass V := f(U) offen und $f: U \to V$ ein Diffeomorphismus ist.

Abgabe: Freitag, 03.05.2013, zu Beginn der Vorlesung. Mit * gekennzeichnete Aufgaben müssen nicht abgegeben werden.