Mathematik II für Naturwissenschaftler

Übungsblatt 5 (Abgabe am 08.05.2014)

Aufgabe 20 (10 Punkte)

b) Die Abbildung $\mathbb{R}^2 \ni \vec{x} \mapsto \vec{x}' = D_\phi \vec{x} \in \mathbb{R}^2$ mit

$$D_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

bewirkt eine Drehung des Vektors \vec{x} um den Winkel ϕ .

- (i) Illustrieren Sie dies für $\phi = \frac{\pi}{3}$ und die Vektoren $(0,2)^T$ und $(3,1)^T$ mit einer Zeichnung.
- (ii) Zeigen Sie: $D_{\phi}^{-1} = D_{\phi}^{T} = D_{-\phi}$ (d.h. $\vec{x} = D_{-\phi} \vec{x}'$).

Aufgabe 21 (10 Punkte)

Wir möchten die folgende Menge zeichnen,

$$E = \left\{ \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \frac{5}{8}(x^2 + y^2) + \frac{3}{4}xy = 1 \right\}.$$

- a) Drücken Sie dazu zunächst die Bestimmungsgleichung in den gedrehten Koordinaten $(x',y')^T=D_\phi\,\vec{x}$ aus $(D_\phi$ wie in Aufgabe 20), und wählen Sie ϕ so, dass kein Term proportional zu x'y' auftritt.
- b) Zeichnen Sie E in einem xy-Koordinatensystem. Tragen Sie dazu zunächst das gedrehte x'y'-Koordinatensystem ein.

HINWEIS: Die Gleichung $\frac{x'^2}{a^2}+\frac{y'^2}{b^2}=1$ beschreibt eine Ellipse, vgl. Aufgabe 13.

Bemerkung: Wir werden bald lernen, wie man dieselbe Aufgabe mithilfe von Eigenwerten und Eigenvektoren löst. Hier wird das jedoch noch nicht benötigt!

Aufgabe 22 (10 Punkte)

Bestimmen Sie für die folgenden Matrizen alle Eigenwerte mit zugehörigen Eigenvektoren,

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}.$$

Aufgabe 23 (10 Zusatzpunkte)

Zeigen Sie: Die unitären $n \times n$ -Matrizen,

$$U(n) := \left\{ A \in \mathbb{C}^{n \times n} \mid \overline{A}^T A = I \right\},$$

bilden bezüglich der Matrixmultiplikation eine Gruppe.