Mathematik für Physiker IV

Übungsblatt 8

Aufgabe 30: Möbiustransformationen

 (\times)

Sei $SL_2(\mathbb{R}) = \{M \in \mathbb{R}^{2 \times 2} | \det(M) = 1\}$ die spezielle lineare Gruppe. Die zu $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ gehörige $M\ddot{o}biustransformation$ ist definiert durch

$$f_M(z) = \frac{az+b}{cz+d}.$$

Im folgenden bezeichnet $\mathbb{H} = \{z \in \mathbb{C} | \text{Im}(z) \geq 0\}$ die obere Halbebene und $\mathbb{D} = \{z \in \mathbb{C} | |z| \leq 1\}$ die Einheitsscheibe.

- a) Zeige, dass $f_M(\mathbb{H}) \subseteq \mathbb{H}$.
- b) Zeige, dass $f_M \circ f_N = f_{MN}$.
- c) Sei $M_{\theta} = \begin{pmatrix} \cos(\theta) \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ und $F : \mathbb{H} \to \mathbb{D}$, $F(z) = \frac{i-z}{i+z}$. Zeige, dass dann $F \circ f_{M_{\theta}} \circ F^{-1}$ eine Rotation auf \mathbb{D} ist.

Aufgabe 31:
$$(\times)$$

Zeige, dass für |a| < 1 gilt

$$\int_0^{2\pi} \log(|1 - ae^{i\theta}|) d\theta = 0.$$

Beweise dann, dass die gleiche Aussage auch für |a| < 1 gilt.

Aufgabe 32:
$$(\times)$$

Zeige, dass die Abbildung

$$f(z) = \frac{1+z}{1-z}$$

eine konforme Abbildung von der oberen Halbscheibe auf den 1. Quadranten ist.

Aufgabe 33:
$$(\times)$$

Sei $f(z) = (z+1)^n + (z-1)^{-m}$ mit n, m > 0. Berechne

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{f'(z)}{f(z)} dz.$$