Definition Eliminationsverfahren Unterräume Lösungsmengen

Lineare Gleichungssysteme

Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Stefan Keppeler

7. Dezember 2009

Definition

Beispiel: Wassermengen und Konzentrationen in einem Fluss

Eliminationsverfahren

Beispiel

Zeilenstufenform

Beispiel (Fortsetzung)

Unterräume

Lösungsmengen

Beispiel

Anhang

Beispiel: Tomographie

Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n Gleichungen der Form

$$\sum_{j=1}^{m} a_{ij} x_j = b_i, \quad 1 \le i \le n,$$

mit Unbekannten x_1, \ldots, x_m und bekannten Koeffizienten a_{ij} und b_i .

- ▶ Äquivalent kann man schreiben $A\vec{x} = \vec{b}$, wobei $\vec{x} \in \mathbb{R}^m$ gesucht ist, und $A = (a_{ij}) \in \mathcal{M}(n,m)$ und $\vec{b} \in \mathbb{R}^n$ vorgegeben sind.
- ▶ Das Gleichungssystem heißt homogen, falls $\vec{b} = \vec{0}$, sonst inhomogen.
- ► Die Lösungsmenge ist

$$L_{\vec{b}} = \{ \vec{x} \in \mathbb{R}^m \mid A\vec{x} = \vec{b} \}.$$

Betrachte ein Gewässer (Fluss) mit

- ▶ mehreren Zuflüssen (j = 1, ..., n) und
- einem Abfluss.

Wir interessieren uns für die einzelnen Zuflussmengen Q_j .

Aber: Messung aller zu aufwändig.

Messe stattdessen

- ightharpoonup Abflussmenge $Q_{\rm ges}$ (z.B. an einem Wehr) und
- ► Konzentrationen verschiedener Stoffe
 - ightharpoonup im Abfluss, $c_{\text{ges}}^{\text{Stoff}}$, und
 - ▶ in allen Zuflüssen, c_i^{Stoff} .

Bestimme daraus die Zuflussmengen (unter der Annahme guter Durchmischung). &

Lösung durch Eliminationsverfahren / Gauß-Algorithmus:

Füge Daten A und \vec{b} zur einer $n \times (m+1)$ -Matrix $B = (A|\vec{b})$ zusammen. Erlaubte Operationen:

1. **Vertauschen** zweier Zeilen von *B*.

$$\begin{pmatrix} 1 & 2 & | & 3 \\ 4 & 5 & | & 6 \end{pmatrix} \stackrel{\longleftarrow}{\longleftarrow} \qquad \stackrel{\leadsto}{\sim} \qquad \begin{pmatrix} 4 & 5 & | & 6 \\ 1 & 2 & | & 3 \end{pmatrix}$$

2. **Multiplikation** einer Zeile von B mit Faktor $\alpha \neq 0$.

$$\begin{pmatrix} 1 & 2 & | & 3 \\ 4 & 5 & | & 6 \end{pmatrix} \mid \cdot 2 \qquad \qquad \sim \qquad \begin{pmatrix} 2 & 4 & | & 6 \\ 4 & 5 & | & 6 \end{pmatrix}$$

3. **Addition** des α -fachen einer Zeile von B zu einer anderen.

$$\begin{pmatrix} 1 & 2 & | & 3 \\ 4 & 5 & | & 6 \end{pmatrix} \stackrel{-4}{\hookleftarrow} \qquad \rightsquigarrow \qquad \begin{pmatrix} 1 & 2 & | & 3 \\ 0 & -3 & | & -6 \end{pmatrix}$$

Anwendung am folgenden LGS

$$4x_1 + 4x_2 + 3x_3 - 2x_4 = 16 (1)$$

$$2x_1 + 2x_2 + 3x_3 - 4x_4 = 14 (2)$$

$$-5x_1 - 5x_2 - \frac{2}{3}x_3 - \frac{11}{3}x_4 = -\frac{23}{3} \tag{3}$$

kompakt geschrieben:

$$\begin{pmatrix} 4 & 4 & 3 & -2 & | & 16 \\ 2 & 2 & 3 & -4 & | & 14 \\ -5 & -5 & -2/3 & -11/3 & | & -23/3 \end{pmatrix}$$

$ \begin{pmatrix} 4 & 4 & 3 & -2 \\ 2 & 2 & 3 & -4 \\ -5 & -5 & -\frac{2}{3} & -\frac{11}{3} \end{pmatrix} $	$ \begin{vmatrix} 16 \\ 14 \\ -23/3 \end{vmatrix} \mid -1/4 $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 4 \\ 14 \\ -23/3 \end{vmatrix} \xleftarrow{-2}_{+}_{+}^{5} $
$ \begin{pmatrix} 1 & 1 & 3/4 & -1/2 \\ 0 & 0 & 3/2 & -3 \\ 0 & 0 & 37/12 & -37/6 \end{pmatrix} $	$ \begin{vmatrix} 4 \\ 6 \\ -37/3 \end{vmatrix} \begin{vmatrix} \cdot 2/3 \\ \cdot 12/37 \end{vmatrix} $
$\begin{pmatrix} 1 & 1 & 3/4 & -1/2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 \end{pmatrix}$	$\left \begin{array}{c}4\\4\\4\end{array}\right) \rightleftarrows_{+}^{-1}$
$\begin{pmatrix} 1 & 1 & 3/4 & -1/2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$

LGS ist nun auf Zeilenstufenform, allgemein: (* heißt "kann $\neq 0$ sein")

$$\begin{pmatrix} 0 & \cdots & 0 & \boxed{1} & * & \cdots & \cdots & \cdots & * & * \\ 0 & \cdots & \cdots & \cdots & 0 & \boxed{1} & * & \cdots & \cdots & * & * \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & \boxed{1} & * & \cdots & * & * \\ 0 & \cdots & 0 & * \\ \vdots & & & & & & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & * \end{pmatrix}$$

Bemerkung: Ob an den Stufen wirklich 1en stehen ist egal, entscheidend ist, dass die Zahlen in den Kästchen $\neq 0$ sind.

$$\left(\begin{array}{ccc|cccc} 1 & 1 & 3/4 & -1/2 & & 4 \\ 0 & 0 & 1 & -2 & & 4 \\ 0 & 0 & 0 & 0 & & 0 \end{array}\right)$$

▶ Diesem Schema entsprechen die umgeformten Gleichungen

$$x_1 + x_2 + \frac{3}{4}x_3 - \frac{1}{2}x_4 = 4$$
$$x_3 - 2x_4 = 4.$$

▶ Auflösen nach x_1 und x_3 :

$$x_1 = 4 - x_2 - \frac{3}{4}x_3 + \frac{1}{2}x_4$$
$$x_3 = 4 + 2x_4$$

lacktriangle Wähle $x_2=s\in\mathbb{R}$, $x_4=t\in\mathbb{R}$ beliebig \leadsto

$$x_1 = 1 - s - t$$
$$x_2 = 4 + 2t$$

Damit ist die allgemeine Lösung

$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$$

Anders gesagt, die Lösungsmenge ist

$$L_{\vec{b}} = \left\{ \vec{x} \in \mathbb{R}^4 \;\middle|\; \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \; s,t \in \mathbb{R} \right\}.$$

Definition: Eine Teilmenge $U \subset \mathbb{R}^n$ heißt Unterraum (des \mathbb{R}^n), falls U ebenfalls ein Vektorraum ist, d.h insbesondere falls aus $\vec{u}, \vec{v} \in U$ folgt, dass auch $\alpha \vec{u} + \beta \vec{v} \in U \ \forall \ \alpha, \beta \in \mathbb{R}$.

Definition:

Der von den Vektoren $\vec{u}^{(1)},\dots,\vec{u}^{(k)}\in\mathbb{R}^n$ aufgespannte Unterraum ist die Menge

$$\langle \vec{u}^{(1)}, \dots, \vec{u}^{(k)} \rangle := \left\{ \alpha_1 \vec{u}^{(1)} + \dots + \alpha_k \vec{u}^{(k)} \mid \alpha_1, \dots, \alpha_k \in \mathbb{R} \right\}.$$

- ▶ $\alpha_1 \vec{u}^{(1)} + \ldots + \alpha_k \vec{u}^{(k)}$ heißt Linearkombinationen (LK) der Vektoren $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)}$.
- ▶ Unterräume heißen auch Teilräume oder lineare Teilräume.
- ▶ Im Fall k = 0 setzen wir $\langle \rangle = \{\vec{0}\}.$

Satz: Die Lösungsmenge $L_{\vec{0}} = \{\vec{x} \in \mathbb{R}^m \,|\, A\vec{x} = \vec{0}\,\}$ eines homogenen linearen Gleichungssystems ist stets ein Unterraum.

Beweis:

Satz: Ist $\vec{u} \in \mathbb{R}^m$ irgendeine Lösung des inhomogenen linearen Gleichungssystems $A\vec{x} = \vec{b}$, ist also $A\vec{u} = \vec{b}$, dann ist die Lösungsmenge $L_{\vec{b}} = \{\vec{x} \in \mathbb{R}^m \,|\, A\vec{x} = \vec{b}\,\}$ gegeben durch

$$L_{\vec{b}} = \vec{u} + L_{\vec{0}} := \left\{ \vec{x} \in \mathbb{R}^m \mid \vec{x} = \vec{u} + \vec{y} \,, \ \vec{y} \in L_{\vec{0}} \right\}.$$

Beweis:

Bemerkung: Mengen der Form $\vec{u} + L_{\vec{0}}$, wobei $L_{\vec{0}}$ ein Unterraum ist, heißen auch affine Teilräume. Sie entstehen aus (linearen) Teilräumen durch Translation.

- Anton und Berta sind Geschwister
- ► Anton hat doppelt so viele Schwestern wie Brüder
- ▶ Berta hat gleich viele Schwestern wie Brüder

Wieviele Kinder gibt es in der Familie? \mathscr{I}

Beispiel: Tomographie

► Transmissionskoeffizienten (2D)

Schattenbild ergibt Gesamttransmission

$$\lambda_1 = \alpha_{11}\alpha_{12}, \quad \lambda_2 = \alpha_{21}\alpha_{22},
\mu_1 = \alpha_{11}\alpha_{21}, \quad \mu_2 = \alpha_{12}\alpha_{22}.$$

► Logarithmieren, $\log \lambda_1 = \log \alpha_{11} + \log \alpha_{12}$ etc., führt auf das LGS

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \log \alpha_{11} \\ \log \alpha_{12} \\ \log \alpha_{21} \\ \log \alpha_{22} \end{pmatrix} = \begin{pmatrix} \log \lambda_1 \\ \log \lambda_2 \\ \log \mu_1 \\ \log \mu_2 \end{pmatrix}$$