Testaufgaben

Verständnissaufgaben

Metrische Räume

- (i) Geben Sie die Definition eines metrischen Raumes an.
- (ii) Kann man auf jeder Menge X eine metrische Struktur (Abstandsfunktion) $d: X \times X \to [0, \infty)$ definieren, die X zu einem metrischen Raum macht?
- (iii) Es sei $(E, \| \|)$ eine metrischer Raum. Wie läßt sich aus der Norm eine Metrik auf E definieren? Ist dann E mit der von $\| \|$ induzierten Metrik d automatische vollständig?
- (iv) Es sei X eine endliche Menge. Sind dann je zwei metrische Strukturen (X, d_1) und (X, d_2) automatisch topologisch äquivalent (im Sinne von 1.2.6c)?
- (v) Es sei X eine unendliche Menge. Konstruieren Sie auf X zwei nicht äquivalente metrische Strukturen (d.h. Abstandsfunktionen $d_j: X \times X \to [0, \infty)$, so dass (X, d_1) und (X, d_2) nicht topologisch äquivalent sind).
- (vi) Geben Sie ein Beispiel eines vollständigen und unendlichdimensionalen Vektorraumes an.

Konvergenz, Stetigkeit und Kompaktheit

- (i) Geben Sie die Definition der Stetigkeit einer Funktion $f:(X,d_X)\to (Y,d_Y)$ in einem Punkt $x\in X$ an.
- (ii) Falls f stetig in x ist, ist das Urbild jeder offenen Menge $V \subset Y$, die f(x) enthält, eine Umgebung von x?
- (iii) Ist eine stetige und bijektive Abbildung $f:(\mathbb{R},d_e)\to(\mathbb{R},d_e)$ auch monoton?
- (iv) Ist die Grenzwertfunktion g einer lokal gleichmäßig konvergierenden Folge von Funktionen $f_n: X \to \mathbb{R}$ stetig?
- (v) Geben Sie eine Folge $f_n : \mathbb{R} \to \mathbb{R}$ von Funktionen an, die punktweise, jedoch nicht gleichmäßig gegen eine stetige Funktion $g : \mathbb{R} \to \mathbb{R}$ konvergieren.
- (vi) Es sei $\|$ $\|$ die Operatornorm auf dem Vektorraum aller linearen Abbildungen $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ (d.h., den Raum aller reellen $n \times n$ Matrizen). Erklären Sie, was das in Sprache der metrischen Räume bedeutet, wenn man sagt, dass die Reihe $\sum_{j=m}^{\infty} C_j$ von Elementen $C_j \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ gegen ein $M \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ konvergiert.
- (vii) Mit der Notation wie oben, beweisen Sie oder widerlegen Sie:

"Für jedes
$$A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$$
 konvergiert die Reihe $\sum_{j=k}^{\infty} \frac{A^j}{j!}$ gegen ein Element $B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ "

- (viii) Beweisen Sie den Zwischenwertsatz 1.3.6.
- (ix) Beweisen Sie oder widerlegen Sie

"Es gibt gleichmäßig stetige Funktionen $f:(X,d_X)\to (Y,d_Y)$, die nicht stetig sind."

- (x) Es sei $A := \{0\} \cup \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. Ist dann $A \times A \subset \mathbb{R}^2$ kompakt?
- (xi) Es sei $f: \mathbb{R}^3 \to \mathbb{R}$ eine beliebiege, zweimal stetig differenzierbare Funktion. Dann hat f unter der Nebenbedingung $x_1^4 + x_2^4 + x_3^4 = 1$ mindestens ein lokales Minimum und ein lokales Maximum.

Differentialrechnung

- (i) Erklären Sie am Beispiel einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ den Unterschied zwischen der partiellen Ableitungen $\frac{\partial f}{\partial x}(0)$, $\frac{\partial f}{\partial y}(0)$ sowie der Frechétableitung Df von f in 0.
- (ii) Gibt es Funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, für die die Frechétableitung Df(0) existiert, nicht jedoch die partiellen Ableitungen $\frac{\partial f}{\partial x}(0)$, $\frac{\partial f}{\partial y}(0)$?
- (iii) Es sei $f := g \circ h$ eine Verkettung von Abbildungen. Ist dann h differenzierbar falls fund *q* differenzierbar sind?
- (iv) Es sei $g: \mathbb{R}^3 \to \mathbb{R}$ explizit vorgegeben und sei f die durch $g(y_1, y_2, f(y_1, y_2)) = 0$, $f(x_1, x_2) = x_3$ in einer Umgebung $U \subset \mathbb{R}^2$ von (x_1, x_2) implizit gegeben Funktion. Angenommen, $\frac{\partial g}{\partial x_3}(x_1, x_2, x_3) \neq 0$. Kann man dann die Ableitungen

$$\frac{\partial f}{\partial x_1}(x_1, x_2), \qquad \frac{\partial f}{\partial x_2}(x_1, x_2)$$

explizit berechnen, ohne die Gestalt von f explizit zu kennen? Oder muss vorher die Gestalt von f explizit aus der Gleichung $g(\mathbf{x}, f(\mathbf{x})) = 0$ hergeleitet werden?

- (v) Es sei $f: \mathbb{R}^n \to \mathbb{R}^2$ eine C^1 -Abbildung. Ist die Menge $A:=\{(x,y)\in \mathbb{R}^n\times \mathbb{R}^2: y=1\}$ $f(x), x \in \mathbb{R}^n$ eine Untermannigfaltigkeit von \mathbb{R}^{n+2} ?
- (vi) Es sei E ein Banachraum und $f: E \to \mathbb{R}$ eine differenzierbare Funktionen. Angenommen, dass $Df(0) \neq 0$. Beweisen Sie oder widerlegen Sie:

"f hat kein lokales Extremum im 0" (vii) Es sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ eine diffbare Abbildung. Beweisen Sie oder widerlegen Sie:

"Falls Df(x) invertierbar für alle $x \in \mathbb{R}^2$ ist, so ist $f: \mathbb{R}^2 \to f(\mathbb{R}^2)$ ein Diffeomorphismus."

- (viii) Was is der Unterschied zwischen der Taylorreiche einer C^{∞} -Funktion $f: \mathbb{R}^n \to \mathbb{R}$ und einer allgemeinen Potenzreihe auf \mathbb{R}^n (d.h. in den Variablen x_1, \dots, x_n)?
 - (ix) Formulieren Sie den Mittelwertsatz für differenzierbare Abbildungen $\psi: \mathbb{R} \to E$ wobei E ein Banachraum ist.
 - (x) Wenn die Hessematrix einer C^2 -Funktion $\psi: \mathbb{R}^n \to \mathbb{R}$ im Punkte p positiv semidefinit ist und darüberhinaus auch noch $D\psi(p) = 0$ gilt, nimmt dann ψ in p ein lokales Extremum an?

Rechenaufgaben

- (i) Berechnen Sie den euklidischen Abstand $d_e(A, B) = \inf_{a \in A, b \in B} d(a, b)$ zwischen den Mengen $A := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1x_2x_3 = 1, x_j > 0\} \text{ und } B := \{(-1, -1, -1)\}.$
- (ii) Berechnen Sie den Durchmesser des Einheitswürfels $C = \{x \in \mathbb{R}^n : 0 \le x_i \le 1\}$ in \mathbb{R}^3 , \mathbb{R}^4 und \mathbb{R}^5 .
- (iii) Berechnen Sie den Winkel zwischen der Ebene $E = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ und der Gerade $\ell = \mathbb{R} \cdot (1, 2, 3)$
- (iv) Es sei E eine endlichdim. Vektorraum und GL(E) die Menge (Gruppe) aller invertierbaren linearen Abbildungen $E \rightarrow E$. Berechnen Sie das Differential von inv: $GL(E) \to GL(E)$, $g \mapsto g^{-1}$, an der Stelle $A \in GL(E)$.

- (v) Bestimmen Sie den punktweisen Grenzwert der Funktionenreihe $\sum_{k=1}^{\infty} \frac{\sin kx}{k}$ (schwer!). Konvergviert die Reihe auch gleichmäßig?
- (vi) Berechnen Sie näherungsweise $1,05^{1,02}$ mit einem Fehler $< 10^{-4}$, (natürlich ohne den Tachenrechner zu bemühen).

Hinweis: Entwickeln Sie die Funktion $f(x, y) = x^y$ um (1, 1).

- (vii) Bestimmen Sie alle lokale und globale Extrema von $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := x^2 4x 2xy + 2y^2 + 6y 1$. (viii) Gegeben sei $f(x,y) := \begin{cases} \exp(-1/(x^2 + y^2)) & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$. Berechnen Sie alle partiellen Ableitungen von f der Ordnung 2. Gilt

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0) ??$$

- (ix) Welche der folgenden Teilmengen sind Untermannigfaltigkeiten?

 - (a) $M := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^4 = x_3^5\}$ (b) $N := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^4 + x_2^4 + x_3^4 + x_4^4 = 16, x_3 = 0\}$

Viel Erfolg!!!