Mathematik I für Naturwissenschaftler

Übungsblatt 5 (Abgabe am 14.11.14)

Aufgabe 23 (10 Punkte)

Wo sind die folgenden Funktionen differenzierbar? Bestimmen Sie ggf. die Ableitung.

a)
$$f(x) = \sqrt{x\sqrt{x\sqrt{x}}}$$
 b) $f(x) = |4 - x^2|$ c) $f(x) = \sqrt{\frac{x-1}{x+1}}$ d) $f(x) = x|x|$

Aufgabe 24 (10 Punkte)

Berechnen Sie die folgenden Grenzwerte.

a)
$$\lim_{x \to -2} \frac{x^8 - 256}{x^3 + 8}$$
 b) $\lim_{x \to 3} \frac{2x - 6}{x^3 - 27}$ c) $\lim_{x \to 1} \frac{1 - x^n}{x - 1}$ für $n \in \mathbb{N}$

Aufgabe 25 (10 Punkte)

Wie Sie wissen gilt beim Ableiten die Produktregel (fg)' = f'g + fg'. Zeigen Sie für $n \in \mathbb{N}_0$:

$$(fg)^{(n)}(x) = \sum_{\nu=0}^{n} \binom{n}{\nu} f^{(\nu)}(x) g^{(n-\nu)}(x).$$

ZUR ERINNERUNG: $f^{(k)}(x)$ ist die kte Ableitung der Funktion f(x) nach x, d.h. $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$ etc.

HINWEIS: Führen Sie eine vollständige Induktion nach n durch, und werfen Sie einen Blick auf den Beweis der Binomischen Formel (Satz 1).

Aufgabe 26 (10 Punkte)

Sei $x_0 \in \mathbb{R}$. Wir betrachten im Folgenden stets die Asymptotik für $x \to x_0$.

a) Sei $n \in \mathbb{N}_0$ und $k \in \mathbb{Z}$ mit $k \geq -n$. Zeigen Sie die folgende Äquivalenz:

$$f(x) = o((x - x_0)^n) \Leftrightarrow (x - x_0)^k f(x) = o((x - x_0)^{n+k})$$

Dafür schreiben wir auch kurz $(x-x_0)^k o((x-x_0)^n) = o((x-x_0)^{n+k})$.

b) Seien $n, m \in \mathbb{N}_0$ sowie $f(x) = o((x - x_0)^n)$ und $g(x) = o((x - x_0)^m)$. Zeigen Sie¹

$$f(x) + g(x) = o((x - x_0)^{\min(n,m)}).$$

Dafür schreiben wir kurz $o((x-x_0)^n) + o((x-x_0)^m) = o((x-x_0)^{\min(n,m)}).$

c) Seien $f, g : \mathbb{R} \to \mathbb{R}$ in x_0 differenzierbare Funktionen. Beweisen Sie die Produktregel,

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0),$$

unter Verwendung der Charakterisierung der Ableitung mit Hilfe von Klein-o (siehe Lemma 4).

¹Dabei ist $\min(x_1, x_2, \dots, x_N)$ die kleinste der Zahlen x_1, x_2, \dots, x_N , d.h. z.B. ist $\min(2, 0, 1, 3) = 0$.

Aufgabe 27 (12 Zusatzpunkte)

Üben Sie bis spätestens 14.12.14 auf www.khanacademy.org die Skills

- Derivative intuition,
- Graphs of functions and their derivatives,
- Visualizing derivatives und
- Power rule.

Je Skill, für die Sie am Stichtag den Status Practiced oder Level One erreicht haben, erhalten Sie 2 Punkte. Für den Status Level Two oder Mastered schreiben wir 3 Punkte gut.

HINWEISE: Siehe Aufgabe 11 (Blatt 2).