Übungen zu "Differentialgeometrie I"

- 1. Sei $V = \mathbb{R}^2$ und (e_1, e_2) die kanonische Basis von V.
 - (a) Zeigen Sie, dass die natürliche bilineare Abbildung $s: V \times V \to V \otimes V$ bzgl. der Basen $((e_i, 0), (0, e_j): i, j = 1, 2)$ von $V \times V$ und $(e_i \otimes e_j: i, j = 1, 2)$ von $V \otimes V$ die folgende Koordinatendarstellung hat:

$$(x^1, x^2, y^1, y^2) \mapsto (x^1y^1, x^1y^2, x^2y^1, x^2y^2).$$

- (b) Zeigen Sie, dass der Tensor $e_1 \otimes e_1 + e_2 \otimes e_2 \in V \otimes V$ nicht im Bild von s ist.
- 2. Seien V und W endlich-dimensionale \mathbf{R} -Vektorräume und $\Phi: V^* \otimes W^* \to \mathrm{Bil}(V,W;\mathbf{R})$ die lieare Abbildung, die von

$$(\lambda, \mu) \mapsto ((v, w) \mapsto \lambda(v)\mu(w)),$$

 $\lambda \in V^*$, $\mu \in W^*$, $v \in V$, $w \in W$ induziert wird (vgl. Kommentar (3.9) der Vorlesung). Zeigen Sie, dass Φ ein Isomorphismus ist.

- 3. Sei V ein \mathbf{R} -Vektorraum, T(V) seine Tensoralgebra und $i: V \to T(V)$ die natürliche Inklusion. Zeigen Sie die universelle Eigenschaft des Paares (T(V), i): Ist A eine \mathbf{R} -Algebra und $j: V \to A$ linear, so gibt es genau einen Algebra-Homomorphismus $\Phi: T(V) \to A$ mit $\Phi \circ i = j$.
- 4. Sei V ein reeller Vektorraum endlicher Dimension. Benutzen Sie die universelle Eigenschaft des Tensorproduktes, um zu zeigen:
 - (a) Es gibt genau einen Homomorphismus T von $V^* \otimes V$ nach \mathbf{R} , so dass für $\lambda \in V^*$ und $v \in V$ gilt: $T(\lambda \otimes v) = \lambda(v)$.
 - (b) Sei $S: V^* \otimes V \to \operatorname{End}(V)$ der Isomorphismus, der für jedes $\lambda \in V^*$ und $v, w \in V$ folgendes erfüllt: $S(\lambda \otimes v)(w) = \lambda(w)v$. Zeigen Sie, dass für den Homomorphismus $T \circ S^{-1}$: End $(V) \to \mathbf{R}$ gilt: $T \circ S^{-1} = \operatorname{spur}$.

Abgabe: Donnerstag, 19. Januar 2006, 9.15 Uhr