Übungen zu "Mathematik für Physiker I"

1. Zeigen Sie: Ist $f: \mathbf{R} \to \mathbf{R}$ eine zweimal differenzierbare Funktion mit f'' = f, so existieren $a, b \in \mathbf{R}$, so dass für alle $x \in \mathbf{R}$ gilt:

$$f(x) = a\cosh(x) + b\sinh(x)$$

2. Beweisen Sie die Funktionalgleichungen für cosh und sinh: Für alle $x, y \in \mathbf{R}$ ist:

$$cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)
sinh(x + y) = cosh(x) sinh(y) + cosh(y) sinh(x)$$

- 3. Sei $H=\{(x,y)\in\mathbf{R}^2\mid x^2-y^2=1,\ x>0\}$ und $P=(x,y)\in H$ mit $y\geq 0$. Sei $Q=(x,-y),\ o=(0,0)$ und F der Flächeninhalt der Fläche, die zwischen den Strecken $\overline{oP},\overline{oQ}$ und H eingeschlossen ist. Zeigen Sie, dass dann $x=\cosh(F)$ und $y=\sinh(F)$ ist.
- 4. Diskutieren Sie das Verhalten der Funktion $f: \mathbf{R} \to \mathbf{R}, x \mapsto \arctan(e^{x^2})$, d.h.: bestimmen Sie die Nullstellen, die lokalen Extremstellen und das asymptotische Verhalten für $x \to \pm \infty$ und machen Sie eine Skizze des Graphen.

Abgabe: Mittwoch, 31. Januar 2007