Übungen zu "Mathematik III für Physiker"

- 1. Zeigen Sie: Die Anzahl der Möglichkeiten eine k-elementige Menge M in n Teilmengen S_1, \ldots, S_n disjunkt zu zerlegen, so dass S_j gerade α_j Elemente hat $(j = 1, \ldots, n)$, ist $k!/(\alpha_1! \cdots \alpha_n!)$. (Hinweis: Induktion über n.)
- 2. Man betrachte die Abbildung $f: G \to \mathbf{R}^3$ mit $G = \mathbf{R}_+ \times (0, \pi) \times (0, 2\pi)$ gegeben durch (vgl. Aufgabe 2, Blatt 10)

$$f(r, \theta, \varphi) = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta).$$

Bestimmen Sie das Bild $D \subseteq \mathbb{R}^3$ von f und dann die Jacobische von $g = f^{-1}: D \to G$ in allen Punkten (x, y, z) von D. (Hinweis: Kettenregel, Aufgabe 2 von Blatt 10 und eine Methode zum Invertieren von 3×3 -Matrizen Ihrer Wahl)

3. Sei $G \subseteq \mathbf{R}^n$ eine Gebiet, $x \in G$ und $f: G \to \mathbf{R}^m$ differenzierbar in x. Sei $v \in \mathbf{R}^n$ beliebig und $\alpha: (-\varepsilon, \varepsilon) \to G$ eine differenzierbare Kurve mit $\alpha(0) = x$ und $\dot{\alpha}(0) = v$ ($\varepsilon > 0$). Zeigen Sie, dass für das Differential $Df(x): \mathbf{R}^n \to \mathbf{R}^m$ von f in x gilt:

$$Df(x)v = \frac{d}{dt}|_{t=0}f \circ \alpha(t)$$

4. Sei $\operatorname{Mat}_n(\mathbf{R})$ der Vektorraum der reellen $n \times n$ -Matrizen und $\operatorname{Sym}_n(\mathbf{R})$ der Vektorraum der symmetrischen $n \times n$ -Matrizen. Wir identifizieren $\operatorname{Mat}_n(\mathbf{R})$ mit \mathbf{R}^{n^2} und $\operatorname{Sym}_n(\mathbf{R})$ mit $\mathbf{R}^{n(n+1)/2}$ und betrachten die Abbildung $F: \operatorname{Mat}_n(\mathbf{R}) \to \operatorname{Sym}_n(\mathbf{R})$ gegeben durch $F(A) = A^t A$ (wo A^t die transponierte Matrix von A bezeichnet). Zeigen Sie, dass das Differential von F in einem Punkt $A \in \operatorname{Mat}(\mathbf{R})$ gegeben ist durch $DF(A): \operatorname{Mat}_n(\mathbf{R}) \to \operatorname{Sym}_n(\mathbf{R})$,

$$DF(A)B = B^t A + A^t B.$$

(Hinweis: Benutzen Sie Aufgabe 3.)

Abgabe: Mittwoch, 16. Januar 2008, 9.00 Uhr