WS 2008/09 14.02.2009

Klausur zu "Lineare Algebra I"

Klausur-Nummer:

Name, Vorname:

Geburtsdatum:

Matrikel-Nummer:

1. (a) Seien $f: \mathbb{R}^2 \to \mathbb{R}^3$ und $g: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch

$$f(x_1, x_2) = (x_1, x_2, 0), \quad g(y_1, y_2, y_3) = (y_1, y_2).$$

Zeigen Sie, dass f injektiv und g surjektiv ist.

- (b) Zeigen Sie: Sind $f: \mathbf{R}^2 \to \mathbf{R}^3$ und $g: \mathbf{R}^3 \to \mathbf{R}^2$ beliebige Abbildungen mit $g \circ f = \mathrm{id}$, so muss f injektiv und g surjektiv sein.
- 2. (a) Sei K ein Körper, $n \in \mathbb{N}$ und $E_n \in \operatorname{Mat}_n(K)$ die Einheitsmatrix. Es sei weiter $\lambda \in K$ und $A := \lambda E_n$. Zeigen Sie, dass für alle $B \in \operatorname{Mat}_n(K)$ gilt:

$$AB = BA$$
.

- (b) Gegeben sei $A \in \operatorname{Mat}_2(\mathbf{Q})$ mit folgender Eigenschaft: Für alle $B \in \operatorname{Mat}_2(\mathbf{Q})$ gilt AB = BA. Zeigen Sie : Es gibt ein $\lambda \in \mathbf{Q}$, so dass $A = \lambda E_2$ ist.
- 3. (a) Prüfen Sie ob folgendes Tupel $\mathcal{A} = (v_1, v_2, v_3)$ von Vektoren im \mathbf{R}^3 linear abhängig ist:

$$v_1 = (-1, 2, 1), \quad v_2 = (1, 0, 1), \quad v_3 = (-10, 6, -4)$$

- (b) Sei nun $V := \langle v_1, v_2, v_3 \rangle \subseteq \mathbf{R}^3$. Bestimmen Sie eine Basis von V und begründen Sie.
- 4. (a) Lösen Sie folgendes lineare Gleichungssystem über Q:

(b) Zeigen Sie: Ist $A \in \operatorname{Mat}_3(\mathbf{Q})$ vom Rang 3, so hat das lineare Gleichungssystem Ax = b für jedes $b \in \mathbf{Q}^3$ eine Lösung und die Lösung ist eindeutig.

Bearbeitungszeit: 90 Minuten.