Universität Tübingen Mathematisches Institut Dr. Stefan Keppeler

${\bf Mathematik~I}$ für Biologen, Geowissenschaftler und Geoökologen

Übungsblatt 9 (Abgabe am 10.12.2008)

Aufgabe 38 (10 Punkte)

Sei

$$L = \begin{pmatrix} 0.1 & 0.7 & 0.3 \\ 0.9 & 0 & 0 \\ 0 & 0.8 & 0.2 \end{pmatrix}$$

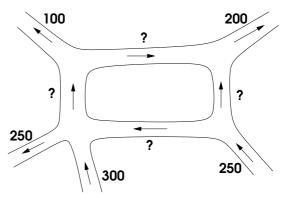
die Leslie-Matrix für ein Populationsmodell mit drei Populationsstadien, d.h. zur Zeit t wird die Population durch den Vektor $\vec{x}^{(t)} = (x_1^{(t)}, x_2^{(t)}, x_3^{(t)})^T$ beschrieben und $\vec{x}^{(t+1)} = L\vec{x}^{(t)}$.

- a) Zur Zeit t sei der Populationsvektor $(2200, 1800, 2000)^T$. Bestimmen Sie $\vec{x}^{(t-1)}$.
- b) Bestimmen Sie alle Gleichgewichtspopulationen, d.h. alle Vektoren $\vec{x} \in \mathbb{R}^3$ für die $L\vec{x} = \vec{x}$ gilt.

Stellen Sie zur Beantwortung der Fragen jeweils ein lineares Gleichungssystem auf und bringen Sie dieses auf Zeilenstufenform!

Aufgabe 39 (10 Punkte)

Rechts ist der Ausschnitt eines Stadtplans gezeigt, in dem nur Einbahnstraßen zu sehen sind. An jedem Straßenabschnitt wurde eingetragen, wieviele Autos dort während einer bestimmten Zeit entlang gefahren sind. Wir nehmen an, dass alle Autos ihre Fahrt außerhalb des Ausschnitts begonnen und beendet haben.



Was können Sie über die Anzahl Autos sagen, die die vier mit Fragenzeichen markierten Staßen benutzten? Stellen Sie dazu ein lineares Gleichungssystem auf, bringen Sie dieses auf Zeilenstufenform und geben Sie die Lösungsmenge an. Geben Sie außerdem für jede, der vier Straßen die größt- und die kleinstmögliche Zahl an Autos an.

Beispiel 10:

Wir definieren in MATLAB einen Vektor $a^T = (1, 20, 1, 31)$ durch die Zuweisung

» a(1)=1; a(2)=20; a(3)=1; a(4)=31

Nun berechnen wir einen Vektor b, dessen Komponenten $b_i = a_i^{1+a_i}/(1+a_i)$ erfüllen. Dies geschieht in MATLAB durch

» b = a.(1+a)./(1+a) (Beachten Sie die Punkte '.'!)

Anschließend erzeugen wir eine 4×4 -Matrix A von Null-Einträgen durch den Befehl A = zeros(4) und weisen der Hauptdiagonalen von A die Einträge in b zu,

Aufgabe 40 (Demographie der Seeschildkröte – MATLAB)

(10 Punkte)

Zur Vorhersage der Größe und Altersstruktur einer Tierpopulation (Seeschildkröten) betrachten wir ein Leslie-Populationsmodell. Dabei berücksichtigen wir nur die weiblichen Tiere, teilen deren Leben in vier Stadien ein (siehe Tabelle) und nehmen vereinfachend an, dass die jährliche Anzahl Eier und die jährliche Überlebenswahrscheinlichkeit innerhalb jedes Stadiums konstant sind.

Stadium	Beschreibung	Dauer	jährliche	gelegte Eier
Nr.	(Alter in Jahren)	in Jahren	Überlebensrate	pro Jahr
1	Neugeschlüpfte (< 1)	1	0.67	0
2	Jungtiere (1–21)	21	0.74	0
3	Erstbrüter (22)	1	0.81	127
4	Reife Brüter (23-54)	32	0.81	79

Wenn d_i die Dauer des *i*-ten Stadiums ist und s_i die Überlebensrate dieses Stadiums, dann lässt sich zeigen, dass der Anteil p_i , der im nächsten Jahr im Stadium i verbleibt, und der Anteil q_i , der im nächsten Jahr ins Stadium i + 1 übergeht, im Mittel

$$p_i = \frac{(1 - s_i^{d_i - 1})s_i}{1 - s_i^{d_i}}$$
 und $q_i = \frac{s_i^{d_i}(1 - s_i)}{1 - s_i^{d_i}}$

beträgt. Ist $\vec{x} = (x_1, x_2, x_3, x_4)^T$ der Populationsvektor, dessen Einträge die Anzahl der Individuen in den 4 Stadien angeben, so beträgt der Populationsvektor im nächsten Jahr $\vec{x}^{(1)} = L\vec{x}$, wobei L die Leslie-Matrix

$$L = \left(\begin{array}{cccc} p_1 & e_2 & e_3 & e_4 \\ q_1 & p_2 & 0 & 0 \\ 0 & q_2 & p_3 & 0 \\ 0 & 0 & q_3 & p_4 \end{array}\right)$$

ist und e_i hierbei die Anzahl der Eier, die ein Individuum im Stadium i pro Jahr legt. Der Populationsvektor nach 2 Jahren beträgt demnach $\vec{x}^{(2)} = L\vec{x}^{(1)} = L^2\vec{x}$, der n Jahren $\vec{x}^{(n)} = L^n\vec{x}$.

- a) Bestimmen (und drucken) Sie die Leslie-Matrix.
- b) Stellen Sie den zeitlichen Verlauf des Populationsvektors für die Anfangspopulation $\vec{x} = (2 \cdot 10^5, 3 \cdot 10^5, 500, 1500)^T$ bis t = 50 graphisch dar.
- c) Wie Sie feststellen, geht nach dieser Modellrechnung die Zahl der erwachsenen Seeschildkröten innerhalb von 50 Jahren stark zurück. Um dem entgegen zu wirken, kommen verschiedene Naturschutzmaßnahmen in Frage. Maßnahme A würde die Überlebensrate s_1 der Neugeschlüpften auf 0.77 erhöhen, Maßnahme B würde die Überlebensrate s_2 der Jungtiere auf 0.77 erhöhen. Bestimmen (und drucken) Sie für die entsprechend veränderten Leslie-Matrizen L_A und L_B und dieselbe Anfangspopulation die Komponenten von $\vec{x}^{(50)}$. Welche Maßnahme würden Sie empfehlen?

A(i,i)=b(i);

end

sowie den Einträgen unter der Hauptdiagonalen die Werte a_1 bis a_3 :

 \gg for i=1:3

A(i+1,i)=a(i);

end

 $[\]gg$ for i=1:4