Graphen von Funktionen Geometrische Operationen in der Ebene Euklidischer Abstand Kreis & Kugel Umfang, Flächeninhalt & Volumen

Mathematik I für Biologen, Geowissenschaftler und Geoökologen Funktionen & Etwas Geometrie

Stefan Keppeler

22. Oktober 2008

Graphen von Funktionen

Geometrische Operationen in der Ebene

Euklidischer Abstand

 \ldots im \mathbb{R}^2 und \mathbb{R}^3

 \ldots im \mathbb{R}^n

Kreis & Kugel

Kreis & Kreisscheibe

Kreis als Funktionsgraph

Sphäre & Vollkugel

Sphäre als Funktionsgraph

Umfang, Flächeninhalt & Volumen

Umfang und Flächeninhalt

Oberfläche und Volumen

Skalierungsverhalten

Bären (Bergmannsche Regel)

▶ Funktion $f: \mathbb{R} \to \mathbb{R}$.

z.B.
$$f_1: x \mapsto x \text{ oder } f_2: x \mapsto 1 - x^2$$

(kurz: $f_1(x) = x \text{ bzw. } f_2(x) = 1 - x^2$)

- ▶ Graph der Funktion $\{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}$ ist Figur in der Ebene
- ▶ allgemein: $f: D \to W$ wobei
 - D: Definitionsbereich
 - W: Wertebereich

oben: $D = W = \mathbb{R}$ andere Beispiele:

- ► Temperatur T(x, y, z) (in °C) an jedem Punkt (x, y, z) des Raumes, d.h. $T: \mathbb{R}^3 \to \mathbb{R}$.
- ▶ oder, der Raum ist nur endlich groß (sagen wir quaderförmig), $D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 < x < a, \ 0 < y < b, \ 0 < z < c\},\$ dann wäre $T:D\to\mathbb{R}$

Geometrische Operationen in der Ebene entsprechen algebraischen Operationen mit den Koordinaten, z.B.

Translation (Verschiebung)
$$(x,y)\mapsto (x+u,y+v)$$
 zentrische Streckung (Vergrößerung) $(x,y)\mapsto (\alpha x,\alpha y)$, $\alpha>1$ Streckung in x -Richtung $(x,y)\mapsto (\alpha x,y)$, $\alpha>1$ Streckung in y -Richtung $(x,y)\mapsto (x,\alpha y)$, $\alpha>1$ Spiegelung an der x -Achse $(x,y)\mapsto (x,-y)$ Spiegelung an der y -Achse $(x,y)\mapsto (-x,y)$ Punktspiegelung im Ursprung $(x,y)\mapsto (-x,-y)$

$$(\alpha < 1$$
: Stauchung / Verkleinerung)

Alle Operationen sind Funktionen $\mathbb{R}^2 \to \mathbb{R}^2$.

Abstand d zweier Punkte $u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{R}^2$

- ▶ Hilfspunkt (u_1, v_2) . . . rechtwinkliges Dreieck
- ► Satz des Pythagoras liefert

$$d(u,v) = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2},$$

definiert Abstandsfunktion $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$.

Analog im \mathbb{R}^3

- ► Raumdiagonale
- ▶ 2 × Pythagoras 🕖

$$d(u,v) = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2},$$

d.h.
$$d: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$
, $(u, v) \mapsto d(u, v)$.

Entsprechend definiert man den Abstand zweier Punkte $u, v \in \mathbb{R}^n$ durch

$$d(u,v) := \sqrt{\sum_{i=1}^{n} (v_i - u_i)^2}$$
$$= \sqrt{(v_1 - u_1)^2 + \ldots + (v_n - u_n)^2}$$

Kreis & Kreisscheibe Kreis als Funktionsgraph Sphäre & Vollkugel Sphäre als Funktionsgraph

ightharpoonup Kreis mit Radius r>0 um Mittelpunkt $u\in\mathbb{R}^2$

$$K_r(u) = \{ v \in \mathbb{R}^2 \, | \, d(u, v) = r \}$$

▶ analog die Kreisscheibe (Radius r > 0, Mittelpunkt $u \in \mathbb{R}^2$)

$$I_r(u) = \{ v \in \mathbb{R}^2 \, | \, d(u, v) \le r \}$$

 $ightharpoonup K_r(u)$ ist Lösungsmenge der Gleichung

$$d(u, v) = r$$

$$\Leftrightarrow \qquad \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2} = r$$

$$\Leftrightarrow \qquad (v_1 - u_1)^2 + (v_2 - u_2)^2 = r^2$$

(quadratische Gleichung)

▶ Betrachte nun v_1 als gegeben und suche f so, dass $v_2 = f(v_1)$, d.h. löse nach v_2 auf:

$$v_2 = u_2 \pm \sqrt{r^2 - (v_1 - u_1)^2}$$
, $|v_1 - u_1| \le r$

▶ Damit ist $K_r(u)$ Vereinigung der Graphen von f_+ und f_- ,

$$f_{\pm}(v_1) = u_2 \pm \sqrt{r^2 - (v_1 - u_1)^2}$$

beide mit Definitionsbereich

$$\left\{ x \in \mathbb{R} \mid |x - u_1| \le r \right\} = \left\{ x \in \mathbb{R} \mid u_1 - r \le x \le u_1 + r \right\}$$

$$= \left[u_1 - r, u_1 + r \right]$$

Kugel mit Radius r>0 um Mittelpunkt $u\in\mathbb{R}^3$

Kugeloberfläche (Sphäre, engl.sphere)

$$S_r(u) = \{ v \in \mathbb{R}^3 \, | \, d(u, v) = r \}$$

► Vollkugel (engl. ball)

$$B_r(u) = \{ v \in \mathbb{R}^3 \, | \, d(u, v) \le r \}$$

Sphäre als Funktionsgraph?

► Sphäre ist Lösungsmenge von

$$(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2 = r^2$$

 \dots auflösen nach v_3

Kreis & Kreisscheibe Kreis als Funktionsgraph Sphäre & Vollkugel Sphäre als Funktionsgraph

ightharpoonup ...auflösen nach v_3

$$v_3 = u_3 \pm \sqrt{r^2 - (v_1 - u_1)^2 - (v_2 - u_2)^2}, \quad (v_1, v_2) \in I_r(u_1, u_2)$$

...zwei Funktionen

$$f_{\pm}(v_1, v_2) = u_3 \pm \sqrt{r^2 - (v_1 - u_1)^2 - (v_2 - u_2)^2}$$

mit Definitionsbereich $D = I_r(u_1, u_2)$.

▶ Damit ist $S_r(u)$ Vereinigung der Graphen

$$\left\{ (x,y,z) \in \mathbb{R}^3 \, \middle| \, z = f_+(x,y) \, , \, \, (x,y) \in I_r(u_1,u_2) \right\}$$
 und
$$\left\{ (x,y,z) \in \mathbb{R}^3 \, \middle| \, z = f_-(x,y) \, , \, \, (x,y) \in I_r(u_1,u_2) \right\}$$

Umfang und Flächeninhalt Oberfläche und Volumen Skalierungsverhalten Bären (Bergmannsche Regel)

	Umfang	Flächeninhalt
Quadrat	4a	a^2
Rechteck	2a + 2b	ab
Quadrat Rechteck Kreis	$2\pi r$	πr^2
Ellipse	keine einfache Formel	πab
Dreieck	a+b+c	$\frac{1}{2}gh$

Skizzen: . . . 🌽

Umfang und Flächeninhalt **Oberfläche und Volumen** Skalierungsverhalten Bären (Bergmannsche Regel)

Form	Oberfläche	Volumen (Rauminhalt)
Würfel	$6a^2$	a^3
Quader	$2ab + 2bc + 2ac$ $4\pi r^2$	abc
Kugel	$4\pi r^2$	$\frac{4\pi}{3}r^3$
Ellipsoid	keine einfache Formel	$\frac{4\pi}{3}r^3$ $\frac{4\pi}{3}abc$
Prisma, Zylinder	hU + 2B	hB
Kegel, Pyramide	hU + 2B keine allgemeine Formel	$\frac{1}{3}hB$

Skizzen: ...

Beobachtung: Bei einer zentrischen Streckung um einen Faktor $\alpha > 0$ (d.h. $(x,y) \mapsto (\alpha x, \alpha y)$ im \mathbb{R}^2 , bzw. $(x,y,z) \mapsto (\alpha x, \alpha y, \alpha z)$ im \mathbb{R}^3) gilt bei allen Objekten

- lacktriangle Weglängen (z.B. Umfang) wachsen 1 um Faktor lpha
- ▶ Flächen wachsen um Faktor α^2
- ▶ Volumina wachsen um Faktor α^3

Dies ist formunabhängig.

Anwendung: Bergmannsche Regel Innerhalb einer Verwandtschaftsreihe sind warmblütige Tiere im kalten Klima großwüchsig.

Erklärung:

¹bzw. schrumpfen für $0 < \alpha < 1$

Umfang und Flächeninhalt Oberfläche und Volumen Skalierungsverhalten Bären (Bergmannsche Regel)

Eisbär

Kragenbär

1,20m-1,80m

Großer Panda

1,20m-1,50m

