WS 2010/11 19.01.2011 Blatt 13

Übungen zu "Differentialgeometrie I"

1. (a) Zeigen Sie, dass $\varphi: \mathbf{R} \to \mathbf{R}^2$, $\varphi(t) = (t^2, t^3)$, injektiv, aber nicht immersiv und ihr Bild die Neillsche Parabel

$$C = \{(x, y) \in \mathbf{R}^2 : y^2 = x^3\}$$

ist.

(b) Zeigen Sie, dass $\psi: \mathbf{R} \to \mathbf{R}^2$, $\psi(t) = (t^2 - 1, t^3 - t)$, immersiv, aber nicht injektiv und ihr Bild das *Cartesische Blatt*

$$D = \{(x, y) \in \mathbf{R}^2 : y^2 = x^2(x+1)\}$$

ist.

- 2. Eine stetige Abbildung $\Phi: M \to N$ zwischen Hausdorffräumen M und N heißt eigentlich, wenn das Urbild jeden Kompaktums $K \subseteq N$ unter Φ wieder kompakt ist. Zeigen Sie: Haben M und N abzählbare Topologie, so gilt: Φ ist genau dann eigentlich, wenn für jede Folge (p_n) in M ohne Häufungspunkte auch die Bildfolge ohne Häufungspunkte ist. (Hinweis: Nehmen Sie an, dass $(\Phi(p_n))$ gegen $q \in N$ konvergiert und betrachten Sie dann das Kompaktum $K = \{\Phi(p_n): n \in \mathbb{N}\} \cup \{q\} \subseteq N$.)
- 3. Sei $\Phi: M \to N$ eine eigentliche Abbildung zwischen Hausdorff-Räumen mit abzählbarer Topologie. Zeigen Sie, dass Φ abgeschlossen ist, d.h.: mit jedem abgeschlossenen $A \subseteq M$ ist auch $\Phi(A) \subseteq N$ abgeschlossen. (Hinweis: Benutzen Sie, dass $A \subseteq M$ genau dann abgeschlossen ist, wenn für alle Folgen (p_n) in A gilt: Konvergiert (p_n) gegen ein $p \in M$, so ist $p \in A$.)
- 4. (a) Sei N eine glatte Mannigfaltigkeit, $M \subseteq N$ eine (abgeschlossene) Untermannigfaltigkeit und $i: M \hookrightarrow N$ die Inklusion. Zeigen Sie, dass i eine eigentliche und injektive Immersion ist.
 - (b) Zeigen Sie nun: Ist $\varphi: M \to N$ eine eigentliche und injektive Immersion, so ist $C := \varphi(M) \subseteq N$ eine abgeschlossene Untermannigfaltigkeit der Dimension dim $N \dim M$. (Hinweis: Nach Satz (3.40) aus der Vorlesung und Aufgabe 3 reicht es zu zeigen, dass φ eine Einbettung ist.)

Abgabe: Mittwoch, 26. Januar 2011, 9.15 Uhr