Mathematik I für Biologen, Geowissenschaftler und Geoökologen **Trigonometrie**

Stefan Keppeler

7. November 2011

Prolog

Quadratische Gleichungen Satz des Pythagoras

Winkel

Trigonometrische Funktionen

Definition

Graphen von \sin, \cos, \tan .

Beispiel: Schwingungen

Additionstheoreme

Umkehrfunktionen

Quadratische Gleichungen in einer Variablen sind von der Form

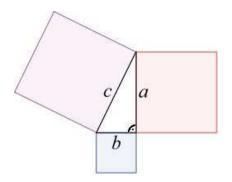
$$ax^2 + bx + c = 0$$

mit $a \neq 0$ (sonst ist es eine lineare Gleichung) und besitzen die Lösungen

$$x_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Erhält man durch quadratische Ergänzung.

Satz: In einem rechtwinklingen Dreieck gilt $a^2 + b^2 = c^2$.



Beweis: 🕖

Beispiel: Entfernung des Horizonts 🗸

Die gängigen Einheiten zur Winkelmessung sind das Gradmaß und das Bogenmaß ($\varphi=\ell/r,\,\ell=$ Länge des Kreisbogens mit Radius r zum Öffnungswinkel φ).

Gradmaß	Bogenmaß
360°	2π
180°	π
90°	$\pi/2$
$57^{\circ}\ 17'\ 45''$	1
45°	$\pi/4$
30°	$\pi/6$
1°	0,0175

Allgemein: $g=(360^\circ/2\pi)b$ bzw. $b=(2\pi/360^\circ)g$.

$$(1/60)^{\circ} = 1' = 1$$
 (Bogen-)Minute, $(1/60)' = 1'' = 1$ (Bogen-)Sekunde.

Definition

Graphen von sin, cos, tan. Beispiel: Schwingungen Additionstheoreme Umkehrfunktionen

Definition: Winkelfunktionen (im rechtwinkligen Dreieck)

$$\frac{\sin = \mathsf{Sinus} = \frac{\mathsf{Gegenkathete}}{\mathsf{Hypothenuse}}\,, \qquad \cos = \mathsf{Kosinus} = \frac{\mathsf{Ankathete}}{\mathsf{Hypothenuse}}\,,$$

$$\tan = \mathsf{Tangens} = \frac{\mathsf{Gegenkathete}}{\mathsf{Ankathete}} \,, \quad \cot = \mathsf{Kotangens} = \frac{\mathsf{Ankathete}}{\mathsf{Gegenkathete}} \,.$$

Die folgenden braucht man eigentlich nicht...

$$\underline{\mathsf{sec}} = \mathsf{Sekans} = \frac{\mathsf{Hypothenuse}}{\mathsf{Ankathete}} \,, \qquad \underline{\mathsf{csc}} = \mathsf{Kosekans} = \frac{\mathsf{Hypothenuse}}{\mathsf{Gegenkathete}} \,.$$

Beispiel: Die Steigung einer schiefen Ebene ist der Tangens des Neigungswinkels.

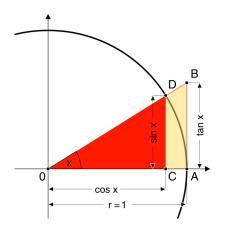
Definition Graphen v

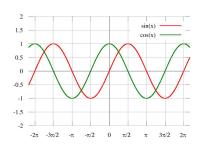
Graphen von sin, cos, tan. Beispiel: Schwingungen Additionstheoreme Umkehrfunktionen

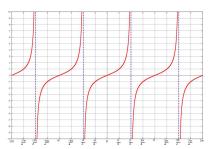
Geometrische Deutung als Streckenlängen mit Vorzeichen am Einheitskreis.

Satz des Pythagoras:

$$\sin^2\varphi + \cos^2\varphi = 1.$$







$$\cos(x) = \sin(x + \frac{\pi}{2})$$

Periodizität:

- $f(x+2\pi) = f(x)$ für $f = \sin, \cos, \tan$
- ▶ auch $f(x + 2\pi n) = f(x)$ für alle $n \in \mathbb{Z}$
- ▶ für Tangens sogar $tan(x + n\pi) = tan x \ \forall \ n \in \mathbb{Z}$

Definition
Graphen von sin, cos, tan.
Beispiel: Schwingungen
Additionstheoreme
Umkehrfunktionen

Bei Schwingungsphänomenen (Oszillationen), z.B., Vibration, Schall, Licht) oder Rotationsbewegung ist eine Größe S(t) eine periodische Funktion der Zeit, S(t+T)=S(t),

- ightharpoonup T = Periode
- ▶ 1/T= Frequenz = Anzahl Schwingungen pro Zeit = $\nu=f$

Harmonische Oszillationen sind Funktionen der Form

$$S(t) = c \sin(\omega t + \alpha) = c \cos(\omega t + \beta),$$

- lacktriangledown periodisch mit Periode $T=2\pi/\omega$
- ightharpoonup c = Amplitude
- $ightharpoonup \alpha = Phasenverschiebung$
- $\omega = (Kreis-)Frequenz = 2\pi\nu$.

Definition
Graphen von sin, cos, tan.
Beispiel: Schwingungen
Additionstheoreme
Ilmkehrfunktionen

Additionstheoreme (ohne Beweis):

$$\sin(x+y) = \sin x \, \cos y + \cos x \, \sin y$$

$$\cos(x+y) = \cos x \, \cos y - \sin x \, \sin y.$$

Beispiel:

Bestimmung der Höhe eines Baumes $h = h_1 + s \tan \alpha$ aus der Messung von h_1, s und α .

Definition
Graphen von sin, cos, tan.
Beispiel: Schwingungen
Additionstheoreme
Umkehrfunktionen

 \sin auf $[-\pi/2,\pi/2]$ streng monoton wachsend \rightsquigarrow Umkehrfunktion

$$\arcsin: [-1,1] \rightarrow [-\pi/2,\pi/2]$$

entsprechend \cos auf $[0,\pi] \leadsto \mathsf{Umkehrfunktion}$

$$\arccos:[-1,1]\to[0,\pi]$$

und \tan auf $(-\pi/2,\pi/2) \rightsquigarrow \mathsf{Umkehrfunktion}$

$$\arctan: \mathbb{R} \to (-\pi/2, \pi/2)$$

Beispiel: Sonnenhöhe

s: Länge eines senkrechten Stabes

b: Länge seines Schattens

Sonnenhöhe: $\varphi = \arctan(s/b)$.

