Übungen zu "Mathematik für Physiker I"

1. Sei $c \in \mathbb{R}$. Differenzieren Sie die Funktionen $f, g, h: (0, \infty) \to \mathbb{R}$,

$$f(x) = x^c$$
, $g(x) = x^x$, $h(x) = x^{x^x}$.

- 2. Zeigen Sie: Ist $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit f' = f so existiert ein $c \in \mathbb{R}$, so dass $f(x) = ce^x$ für alle $x \in \mathbb{R}$ gilt. (Hinweis: Man differenziere die Funktion $x \mapsto e^{-x} f(x)$.)
- 3. Man definiert die hyperbolischen Funktionen cosh, sinh : $\mathbb{R} \to \mathbb{R}$ durch

$$\cosh(x) := \frac{1}{2}(e^x + e^{-x}), \sinh(x) := \frac{1}{2}(e^x - e^{-x}).$$

- (a) Zeigen Sie für alle $x \in \mathbb{R}$: $\cosh^2(x) \sinh(x) = 1$.
- (b) Zeigen Sie für alle $x \in \mathbb{R}$: $\cosh'(x) = \sinh(x), \sinh'(x) = \cosh(x)$.
- (c) Zeigen Sie, dass $\cosh|_{(0,\infty)}:(0,\infty)\to(1,\infty)$ und $\sinh|_{(0,\infty)}:(0,\infty)\to(0,\infty)$ bijektiv sind. Ihre Umkehrfunktionen werden mir Arcosh: $(1,\infty)\to(0,\infty)$ und Arsinh: $(0,\infty)\to(0,\infty)$ bezeichnet. Berechnen Sie die Ableitungen von Arcosh und Arsinh.
- 4. Berechnen Sie das unbestimmte Integral

$$\int \sqrt{1+x^2} dx.$$

(Hinweis: Man substituiere zunächst $x = \sinh(u)$ und führe anschließend eine partielle Integration durch.)

Abgabe: Freitag, 20. Januar 2012, 9 Uhr, in der Vorlesung