Mathematische Physik I

Übungsblatt 11

Aufgabe 45: Lineare Bewegung auf dem 2-Torus

Sei $\mathbb{T}^2 := S^1 \times S^1$ der 2-Torus und $\varphi : \mathbb{R} \to \mathbb{T}^2$, $t \mapsto (\varphi_1(t), \varphi_2(t))$. Es gelte

$$\dot{\varphi}_1 = \omega_1 \quad \text{und} \quad \dot{\varphi}_2 = \omega_2.$$

für $\omega_1, \omega_2 \in \mathbb{R}$. Zeige die folgenden Implikationen:

- a) $\frac{\omega_1}{\omega_2} \in \mathbb{Q} \implies \varphi(t)$ ist periodisch,
- b) $\frac{\omega_1}{\omega_2} \notin \mathbb{Q} \implies \{\varphi(t) | t \in \mathbb{R}\}$ liegt dicht in \mathbb{T}^2 .

Aufgabe 46: Liouville-Torus als Lagrangesche Untermannigfaltigkeit

Sei (M, ω) eine symplektische Mannigfaltigkeit mit dimM = 2n. Die Menge $\{F_1, ..., F_n\} \subset C^{\infty}(M)$ sei integrabel und $f \in \mathbb{R}^n$. Setze $F := (F_1, ..., F_n) : M \to \mathbb{R}^n$ und

$$M_f := \{x \in M | F(x) = f\}.$$

Zeige: Falls f regulärer Wert von F ist, d.h.

$$dF_1(x) \wedge ... \wedge dF_n(x) \neq 0$$
 für alle $x \in M_f$,

dann ist M_f Lagrangesche Untermannigfaltigkeit von M.

Aufgabe 47: Erzeugende Funktionen

Sei $M = \mathbb{R}^{2n}$ versehen mit der kanonischen symplektischen Form ω_0 und sei $H(q, p) = \frac{1}{2}|p|^2$. Bestimme eine erzeugende Funktion S der kanonischen Transformation

$$\Phi^{X_H}_t: (q,p) \mapsto (q+pt,p)$$

gegeben durch den freien Fluss für $t \in \mathbb{R}$. Betrachte dabei eine in der Vorlesung besprochene Möglichkeit S darzustellen. Welche Darstellungen kommen für welche Zeiten infrage?