Mathematische Physik I

Übungsblatt 6

Aufgabe 23: Kommutator und Jacobi-Identität

Sei $\tau \in \mathcal{T}^r_s(M)$. Zeige, dass für alle $X,Y,Z \in \mathcal{T}^1_0$

a)
$$L_{[X,Y]} \tau = (L_X L_Y - L_Y L_X) \tau$$

b)
$$0 = [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]$$

gilt.

Aufgabe 24:

Zeige

$$L_X i_Y - i_Y L_X = i_{[X,Y]}.$$

Aufgabe 25:

Sei $\omega = \omega_i(q)dq^i$ und $X = X^i(q)\frac{\partial}{\partial q^i}$. Berechne $L_X\omega$ mittels

$$L_X \omega = \left. \frac{d}{dt} \right|_{t=0} ((\phi_t)^* \omega),$$

wobei ϕ_t den Fluss zum Vektorfeld X bezeichnet.

Aufgabe 26: Der Laplace-Beltrami-Operator

Sei M eine Mannigfaltigkeit mit Pseudo-Metrik $g \in \mathcal{T}_2^0(M)$ und * der zugehörige Hodge-Operator. Auf $\Lambda_k(M)$ definiert man die Coableitung $\delta:\Lambda_k(M)\to\Lambda_{k-1}(M)$ durch $\delta:=(-1)^k*^{-1}$ d*, wobei nach Aufgabe 14 auf Λ_k gilt $*^{-1}=(-1)^{k(n-k)}\mathrm{sgn}(g)*$.

a) Sei $M=\mathbb{R}^n$ mit der euklidischen Metrik. Zeige, dass für $f\in C^\infty(\mathbb{R}^n)=\Lambda_0(\mathbb{R}^n)$

$$(\delta d + d\delta)f = -\Delta f,$$

wobei $\Delta = \sum_{i=1}^{n} \partial_{q_i}^2$ den üblichen Laplace-Operator bezeichnet.

b) Sei $M=\mathbb{R}^4$ mit der Minkowski-Metrik im \mathbb{R}^4 . Zeige, dass für $f\in C^\infty(\mathbb{R}^4)=\Lambda_0(\mathbb{R}^4)$

$$(\delta d + d\delta)f = -\left(\frac{\partial^2}{\partial t^2} - \Delta\right)f.$$

Aufgabe 27:

Sei M eine k-dimensionale Untermannigfaltigkeit des \mathbb{R}^n . Zeige:

- a) Es existiert eine Folge kompakter Mengen $K_j \subset M$ mit $\bigcup_{j=1}^{\infty} K_j = M$ und $K_j \subset \mathring{K}_{j+1}$.
- b) M besitzt einen abzählbaren, lokal endlichen Atlas. **Hinweis:** Verwende die Folge K_i .