Mathematik für Physiker I

Übungsblatt 10

Aufgabe 44: Konvergente Reihen

 $(Ein \times)$

Zeige:

a) Konvergieren die Reihen $\sum_{n=1}^{\infty} |a_n|^2$ und $\sum_{n=1}^{\infty} |b_n|^2$ mit $a_n, b_n \in \mathbb{C}$, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n \overline{b_n}$ und es gilt

$$\left| \sum_{n=1}^{\infty} a_n \overline{b_n} \right| \le \frac{1}{2} \left(\sum_{n=1}^{\infty} |a_n|^2 + \sum_{n=1}^{\infty} |b_n|^2 \right).$$

b) Konvergiert die Reihe $\sum_{n=1}^{\infty} |a_n|^2$, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n/n$.

Aufgabe 45: Konvergenzradien von Potenzreihen

 $(\{a\},\{b\} \text{ je ein } \times)$

Bestimme für die folgenden Potenzreihen jeweils den Konvergenzradius $(z \in \mathbb{C})$:

a)
$$\sum_{n=0}^{\infty} \frac{1}{n^k} z^n$$
 mit $k \in \mathbb{N}$, b) $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$.

 $\mathit{Hinweis:}$ Verwende $\lim_{n\to\infty}\sqrt[n]{n}=1$ für den Aufgabenteil a) und die Abschätzung

$$e\left(\frac{n}{e}\right)^n < n! < n e\left(\frac{n}{e}\right)^n \quad \forall n \ge 2.$$

für den Aufgabenteil b).

Aufgabe 46: Basen

 $(Ein \times)$

- a) Gegeben sei der Unterraum $U := \{x \in \mathbb{R}^4 | x_1 = x_3\} \subset \mathbb{R}^4$. Bestimme eine Basis von U.
- b) Es sei $P_{\mathbb{R}}^{(4)}$ der Vektorraum der Polynome vom Grade höchstens 4. Es seien $q_1, q_2, q_3 \in P_{\mathbb{R}}^{(4)}$ gegeben durch

$$q_1(x) := x^4 + x^3 + x^2 + x + 1$$
 , $q_2(x) := x^3$, $q_3(x) := x - 1$.

Ergänze (q_1, q_2, q_3) zu einer Basis von $P_{\mathbb{R}}^{(4)}$.

Aufgabe 47: Projektionen

 $(Ein \times)$

Seien $v, w \in \mathbb{R}^2$ mit $\langle v, w \rangle_{\mathbb{R}^2} \neq 0$, wobei $\langle \cdot, \cdot \rangle_{\mathbb{R}^2}$ das kanonische Skalarprodukt auf \mathbb{R}^2 bezeichnet. Wir betrachten die lineare Abbildung $P : \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch

$$\mathbb{R}^2 \ni u \mapsto P u := w \frac{\langle v, u \rangle_{\mathbb{R}^2}}{\langle v, w \rangle_{\mathbb{R}^2}} .$$

- a) Zeige, dass P eine Projektion ist, das heißt die Beziehung $P^2 = P$ erfüllt.
- b) Bestimme den Kern und das Bild der Abbildung P.

Aufgabe 48: Matrix-wertige Potenzreihen

 $(Ein \times)$

Analog zu komplexen Potenzreihen können wir auch Matrix-wertige Potenzreihen

$$\sum_{k=0}^{\infty} x_k A^k$$

definieren, wobei $(x_k)_{k\in\mathbb{N}_0}$ eine komplexe Folge und $A\in M(n\times n,\mathbb{C})$ eine komplexwertige $n\times n$ -Matrix bezeichnet. Ferner steht $A^0:=E_n$ für die Einheitsmatrix und A^k $(k\geq 1)$ für die k-fache Matrizenmultiplikation von A mit sich selbst.

In diesem Zusammenhang setzen wir für $A \in M(n \times n, \mathbb{C})$:

$$\exp(A) := \sum_{k=0}^{\infty} \frac{1}{k!} A^k .$$

Zeige für alle $\alpha \in \mathbb{R}$, dass

$$\exp\left[\alpha \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right] = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Hinweis: Die Kosinus- und Sinus-Funktionen haben folgende Reihendarstellungen $(z \in \mathbb{C})$:

$$\cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$
 , $\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$.

Aufgabe 49: Lineare Abbildungen und Basiswechsel

 $(\{a,b\},\{c\} \text{ je ein } \times)$

a) Finde die zur linearen Abbildung $L_A: \mathbb{R}^2 \to \mathbb{R}^2$ gehörige Matrix A, sodass

$$L_A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad , \quad L_A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

erfüllt ist.

b) Finde die zur linearen Abbildung $L_B:\mathbb{R}^2\to\mathbb{R}^2$ gehörige Matrix B, sodass

$$L_B \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad , \quad L_B \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

erfüllt ist, indem man wie in der Vorlesung gezeigt geeignete Drehmatrizen benutzt, um L_B auf L_A zurückzuführen.

c) Sei $\mathcal{K}=(e_1,e_2)$ die kanonische Basis des \mathbb{R}^2 und $\tilde{\mathcal{K}}=(\tilde{e}_1,\tilde{e}_2)$ eine weitere Basis mit

$$\tilde{e}_1 := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad , \quad \tilde{e}_1 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Seien nun $x, y \in \mathbb{R}$ beliebig. Bestimme nun die Zahlen $\tilde{x}, \tilde{y} \in \mathbb{R}$ (in Abhängigkeit von x und y), sodass die Gleichung

$$xe_1 + ye_2 = \begin{pmatrix} x \\ y \end{pmatrix} = \tilde{x}\tilde{e}_1 + \tilde{y}\tilde{e}_2$$

erfüllt ist.