Mathematik für Physiker I

Übungsblatt 11

Aufgabe 50: Direkte Summe von Vektorräumen

 $(Ein \times)$

Seien zwei Vektorräume V und W über \mathbb{K} gegeben, mit $\dim(V)=n$ und $\dim(W)=m$. Das kartesische Produkt $V\times W$ wird durch die Verknüpfungen

$$(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2), \quad \lambda \cdot (v, w) := (\lambda v, \lambda w)$$

ebenfalls zu einem K-Vektorraum, der die direkte Summe $V \oplus W$ heißt.

Zeige, dass $\dim(V \oplus W) = n + m$ gilt.

Aufgabe 51: Bild und Kern

 $(Ein \times)$

Bestimme für die folgenden linearen Abbildungen jeweils $\operatorname{Kern}(L_j)$, $\operatorname{Bild}(L_j)$, $\operatorname{dim}(\operatorname{Kern}(L_j))$ und $\operatorname{dim}(\operatorname{Bild}(L_j))$.

- a) $L_1: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto a \times x$, d.h. das Kreuzprodukt mit einem festen Vektor $a \in \mathbb{R}^3$. Zur Erinnerung: $(a_1, a_2, a_3) \times (x_1, x_2, x_3) := (a_2x_3 - a_3x_2, a_3x_1 - a_1x_3, a_1x_2 - a_2x_1)$.
- b) $L_2: V \oplus V \to V$, $(v, w) \mapsto v w$, wobei $\dim(V) = n$ sei.

Aufgabe 52: Lineare Abbildungen auf $P_{\mathbb{R}}$

 $(Ein \times)$

- a) Gibt es eine lineare Abbildung $L: \mathbb{R}^3 \to P_{\mathbb{R}}^{(2)}$ mit $L(1,2,3) = x^2 1$, L(0,2,1) = 3x + 4, $L(-1,0,-2) = x^2 + x + 1$?
- b) Bestimme die Matrixdarstellung des Ableitungsoperators D : $P_{\mathbb{R}}^{(4)} \to P_{\mathbb{R}}^{(4)}$, $p \mapsto p'$ bezüglich der Monombasis.

Aufgabe 53: Drehmatrizen im \mathbb{R}^3

 $(Ein \times)$

Wir betrachten im \mathbb{R}^3 die Drehungen X_i , i=1,2,3 um $\pi/2$ im positiven Drehsinn um die x_i -Achse (bei rechtshändiger Anordnung der Achsen). Bestimme die zugehörigen Matrizen bzgl. der kanonischen Basis sowohl für X_i als auch für X_i^{-1} . Bestimme durch geometrische Betrachtungen $X_1^{-1}X_2X_1$ und überprüfe Dein Ergebnis indem Du die Matrixmultiplikation ausführst.

Aufgabe 54: Isomorphismen

 $(Ein \times)$

Seien V, W Vektorräume und $(v_1, ..., v_n)$ eine Basis von V. Zeige, dass die lineare Abbildung $L: V \to W$ genau dann ein Isomorphismus ist, wenn $(Lv_1, ..., Lv_n)$ eine Basis von W ist.

Aufgabe 55:
$$(Ein \times)$$

Berechne alle möglichen Produkte unter folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$