1 Wiederholung

- 1. Wann sind Vektoren eines Vektorraums linear unabhängig?
- 2. Was versteht man unter einem Erzeugendensystem, was unter einer Basis?
- 3. Was versteht man unter einer linearen Abbildung?
- 4. Was besagen Basisauswahl- und Basisergänzungssatz?
- 5. Was besagt die Dimensionsformel für lineare Abbildungen?
- 6. Was versteht man unter einem Basiswechsel?
- 7. Wie bestimmt man den Rang einer Matrix? Wann ist eine Matrix invertierbar? Wie bestimmt man ggf. ihre Inverse?
- 8. Was versteht man unter einer ε -Umgebung $U_{\varepsilon}(x_0)$ für ein $x_0 \in A \subset X$?
- 9. Wann nennt man $x_0 \in X$ Häufungspunkt der Menge $A \subset X$, wann inneren Punkt?
- 10. Wie sind Abschluss, Inneres und Rand einer Menge $A \subset X$ definiert? Wann heißt eine Menge offen, wann abgeschlossen?
- 11. Wann nennt man eine Menge $A \subset \mathbb{R}^n$ kompakt?
- 12. Wann heißt eine Funktion $f: A \to B$ stetig, wann gleichmäßig stetig auf A?
- 13. Sei $f: D \to Y \subset \mathbb{R}^n$. Wann nennt man w den Grenzwert von f für $x \to x_0 \in \overline{D}$?
- 14. Was bedeutet es, wenn eine Funktionenfolge punktweise/gleichmäßig gegen eine Grenzfunktion konvergiert?
- 15. Was besagt der Banach'sche Fixpunktsatz?

2 Übungsaufgaben

- 1. Es sei $f: X \to Y$ eine Abbildung.
 - a) Zeige, dass f genau dann injektiv ist, wenn es eine Abbildung $g: Y \to X$ mit $g \circ f = \mathbb{1}_X$ gibt.
 - b) Wie lautet das analoge Kriterium für surjektives f? Beweise dieses.
- 2. Gegeben sei die Funktion

$$f: \mathbb{Q} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & \text{für } x < \sqrt{2} \\ 1 & \text{für } x > \sqrt{2}. \end{cases}$$

Ist f stetig?

3. Sei $A \subset X$. Zeige, dass $x \in X$ genau dann ein Häufungspunkt von A ist, wenn es eine Folge (x_n) in $A \setminus \{x\}$ gibt mit $x_n \longrightarrow x$.

4. Gegeben sei die Matrix

$$A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}.$$

- a) Bestimme eine Basis $\mathcal{B} = (v, w)$ des \mathbb{R}^2 , wobei v und w durch Multiplikation mit A auf ein Vielfaches von sich selbst abgebildet werden sollen.
- b) Bestimme die Matrix T, welche die Koordinatendarstellung eines Vektors bzgl. \mathcal{B} in die bzgl. der kanonischen Basis \mathcal{K} überführt. Bestimme dann die Matrix D so, dass $A = TDT^{-1}$.
- c) Berechne die einzelnen Komponenten der Matrix A^n in Abhängigkeit von $n \in \mathbb{N}$.
- d) Beweise das Ergebnis aus 4c zur Kontrolle durch vollständige Induktion.
- 5. Sei $L: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$ linear mit $A \in M(m \times n, \mathbb{R})$.
 - a) Zeige, dass es eine Konstante $C \in \mathbb{R}$ gibt, sodass für alle $x \in \mathbb{R}^n$ die Abschätzung $||Ax|| \leq C ||x||$ gilt.
 - b) Zeige, dass L stetig ist.
- 6. Sei $b \in \mathbb{R}^+$ vorgegeben. Für welche $a \in \mathbb{R}$ ist die Matrix

$$A = \begin{pmatrix} a & b & 1 \\ a & 1 & a \\ b & a & b \end{pmatrix}$$

invertierbar?

- 7. Berechne das Cauchy-Produkt der geometrischen Reihe mit sich selbst.
- 8. Zeige, dass das Innere \mathring{A} einer Menge $A\subset X$ gleich der Vereinigung aller offenen Teilmengen von A ist.
- 9. Zeige mithilfe der Definitionen, dass offene Intervalle offene Mengen und abgeschlossene Intervalle abgeschlossene Mengen sind.
- 10. Finde eine Folge (A_n) nichtleerer abgeschlossener Teilmengen von \mathbb{Q} mit der Eigenschaft $A_{n+1} \subset A_n$ für alle $n \in \mathbb{N}$, sodass aber $\bigcap_{n=1}^{\infty} A_n = \emptyset$.
- 11. Es sei $D: \mathcal{P}_{\mathbb{R}}^{(2)} \to \mathcal{P}_{\mathbb{R}}^{(1)}, p \mapsto p'$ der Ableitungsoperator. Seien ferner $\mathcal{A} = (x, 1 x, x^2)$ und $\mathcal{B} = (x + 1, x 1)$ Basen des jeweiligen Polynomraums.
 - a) Bestimme die darstellende Matrix $M_{\mathcal{A}}^{\mathcal{B}}(D)$ des Ableitungsoperators bezüglich der Startbasis \mathcal{A} und der Zielbasis \mathcal{B} .
 - b) Bestimme die Koordinatendarstellungen $a \in \mathbb{R}^3$ von $p(x) = 2x^2 x + 1$ bezüglich \mathcal{A} und $b \in \mathbb{R}^2$ von p'(x) bezüglich \mathcal{B} .
 - c) Verifiziere $b = M_{\mathcal{A}}^{\mathcal{B}}(D) a$.
- 12. Die Menge $V = \text{span}\{\sin(x), \cos(x), 1\}$ ist ein Unterraum der auf \mathbb{R} stetigen und reellwertigen Funktionen.
 - a) Zeige, dass $\dim(V) = 3$.
 - b) Betrachte die lineare Abbildung $L: V \to V, f \mapsto f'$. Bestimme Kern und Bild von L und verifiziere die Dimensionsformel für lineare Abbildungen.

- 13. Sei $A \subset X$. Zeige, dass ∂A abgeschlossen ist.
- 14. Es sei $M \subseteq \mathbb{R}$ nichtleer, offen und abgeschlossen. Zeige, dass $M = \mathbb{R}$.
- 15. Es sei $n \in \mathbb{N}$ beliebig und $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x^n 1}{x 1}$. Zeige, dass $\lim_{x \to 1} f(x) = n$.
- 16. Sei X ein kompakter normierter Raum und $f: X \to \mathbb{R}$ stetig.
 - a) Zeige, dass die Menge aller Funktionswerte von f beschränkt ist: Nimm an, f wäre unbeschränkt und konstruiere eine konvergente Urbildfolge, deren Bildfolge aber divergiert.
 - b) Zeige, dass f sein Supremum annimmt: Ist $s := \sup f(X)$, so ist z.B. s 1/n für alle $n \in \mathbb{N}$ keine obere Schranke von f(X) konstruiere hiermit eine Urbildfolge, deren Bildfolge gegen s konvergiert; verwende dann die Kompaktheit von X.
- 17. Gegeben sei die Menge $M = \{ \circ, \Box, \triangle \}$ sowie die Verknüpfungen $+ : M \times M \to M$ und $\cdot : M \times M \to M$, von denen Folgendes bekannt ist:

- a) Vervollständige die Verknüpfungstabellen so, dass $(M, +, \cdot)$ ein Körper ist.
- b) Gib die Neutralelemente von Addition und Multiplikation an.
- c) Berechne $\circ^{-1} \triangle$.
- 18. Gegeben sei die Funktion $f: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \frac{x}{x+1}$. Zeige mittels Definition der Stetigkeit, dass f im Punkt $x_0 = 1$ stetig ist.
- 19. Gegeben sei der normierte Raum $X=(\mathbb{R}^2,\|\cdot\|_{\infty}).$ Ferner sei die Abbildung

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ x \mapsto \frac{1}{8} \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

gegeben. Zeige, dass der Banach'sche Fixpunktsatz anwendbar ist und f somit genau einen Fixpunkt besitzt.

20. Gegeben seien die Funktionenfolgen (f_n) und (g_n) mit $f_n:[0,1]\to[0,1], x\mapsto x^n$ und

$$g_n: [0,1] \to [0,1], x \mapsto \begin{cases} x/n & \text{für } x \neq 1\\ 1 - 1/n & \text{für } x = 1. \end{cases}$$

Zeige, dass (f_n) und (g_n) punktweise gegen dieselbe Grenzfunktion konvergieren. Ist die Konvergenz jeweils gleichmäßig?