Prof. Dr. Frank Loose, Dr. Sebastian Egger WS 2012/13 21.12.2012 Blatt 10

Übungen zu "Mathematik für Physiker 3"

1. (4 Punkte) Sei $G \subset \mathbb{R}^n$ ein Gebiet und $x \in G$ und $\mathbf{v} \in \mathbb{R}^n$ mit $\|\mathbf{v}\| = 1$. Wir sagen, dass eine Funktion $f: G \to \mathbb{R}$ in x in x Richtung \mathbf{v} partiell differenzierbar ist, wenn der Grenzwert

$$D_{\mathbf{v}}f(x) := \lim_{t \to 0} \frac{f(x + \mathbf{v}t) - f(x)}{t}$$

existiert. Zeigen Sie, ist f total differenzierbar, so ist f in x in alle Richtungen v differenzierbar und es gilt: $D_{\mathbf{v}}f(x) = Df(x)\mathbf{v}$.

2. (4 Punkte) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} 1, & \text{falls } x > 0 \text{ und } y = x^2 \\ 0, & \text{sonst.} \end{cases}$$

Zeigen Sie, dass f in $(x_0, y_0) = (0, 0)$ in alle Richtungen \boldsymbol{v} partiell differenzierbar ist mit $D_{\boldsymbol{v}}f(x_0, y_0) = 0$, aber f in (x_0, y_0) nicht stetig ist.

3 (4 Punkte) Sei $G \subset \mathbb{R}^n$ ein Gebiet. Eine zweimal stetig partiell differenzierbare Funktion $f: G \to \mathbb{R}$ heißt harmonisch, wenn sie der folgenden Potentialgleichung genügt:

$$\Delta f = 0$$

Zeigen Sie: Für $n \neq 2$ ist $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, $f(x) = ||x||^{-n+2}$ und für n = 2 ist $g: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, $g(x) = \ln(||x||)$ harmonisch.

4. (4 Punkte) Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig partiell differenzierbar. Eine Funktion $g: \mathbb{R}^n \to \mathbb{R}$ heißt lokal gleichmäßig stetig falls für jede kompakte zusammenhängende Teilmenge $K \subset \mathbb{R}^n$ die Einschränkung $g|_K: K \to \mathbb{R}$ von g auf K, d.h. $g|_K(x) = g(x)$, gleichmäßig stetig ist. Zeigen Sie: f ist lokal gleichmäßig stetig.

Abgabe: Freitag, 11.01.2013, 11 Uhr in der Vorlesung